Не создает давление насосная станция: Насосная станция не набирает давление и не отключается: причины, ремонт

Содержание

аналитика, советы, помощь с выбором материалов.

[Error] 
Maximum function nesting level of '256' reached, aborting! (0)
/home/bitrix/www/bitrix/modules/main/lib/config/option.php:430
#0: Bitrix\Main\Config\Option::getDefaultSite()
	/home/bitrix/www/bitrix/modules/main/lib/config/option.php:43
#1: Bitrix\Main\Config\Option::get(string, string, string, boolean)
	/home/bitrix/www/bitrix/modules/main/classes/general/option.php:30
#2: CAllOption::GetOptionString(string, string, string)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:2699
#3: CAllMain->get_cookie(string)
	/home/bitrix/www/bitrix/modules/main/lib/composite/engine.php:1321
#4: Bitrix\Main\Composite\Engine::onEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:480
#5: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/tools.php:3880
#6: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#7: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#8: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#9: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#10: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#11: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#12: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#13: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#14: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#15: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#16: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#17: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.
php:3885 #18: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #19: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #20: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #21: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #22: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #23: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #24: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #25: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #26: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #27: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #28: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #29: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #30: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #31: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #32: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #33: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #34: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #35: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #36: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #37: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.
php:465 #38: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #39: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #40: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #41: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #42: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #43: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #44: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #45: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #46: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #47: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #48: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #49: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #50: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #51: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #52: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #53: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #54: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #55: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #56: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #57: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.
php:187 #58: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #59: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #60: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #61: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #62: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #63: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #64: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #65: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #66: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #67: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #68: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #69: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #70: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #71: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #72: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #73: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #74: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #75: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #76: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #77: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.
php:3885 #78: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #79: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #80: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #81: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #82: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #83: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #84: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #85: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #86: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #87: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #88: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #89: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #90: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #91: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #92: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #93: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #94: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #95: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #96: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #97: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.
php:465 #98: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #99: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #100: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #101: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #102: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #103: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #104: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #105: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #106: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #107: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #108: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #109: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #110: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #111: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #112: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #113: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #114: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #115: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #116: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #117: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.
php:187 #118: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #119: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #120: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #121: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #122: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #123: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #124: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #125: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #126: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #127: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #128: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #129: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #130: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #131: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #132: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #133: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #134: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #135: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #136: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #137: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools. php:3885 #138: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #139: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #140: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #141: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #142: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #143: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #144: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #145: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #146: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #147: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #148: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #149: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #150: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #151: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #152: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #153: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #154: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #155: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #156: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #157: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module. php:465 #158: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #159: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #160: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #161: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #162: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #163: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #164: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #165: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #166: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #167: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #168: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #169: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #170: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #171: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #172: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #173: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #174: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #175: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #176: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #177: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application. php:187 #178: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #179: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #180: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #181: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #182: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #183: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #184: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #185: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #186: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #187: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #188: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #189: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #190: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #191: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #192: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #193: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #194: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #195: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #196: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #197: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools. php:3885 #198: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #199: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #200: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #201: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #202: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #203: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #204: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #205: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #206: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #207: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #208: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #209: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #210: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #211: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #212: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #213: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #214: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #215: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #216: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #217: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module. php:465 #218: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #219: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #220: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #221: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #222: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #223: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #224: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #225: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #226: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #227: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #228: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #229: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #230: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #231: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application.php:187 #232: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #233: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #234: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #235: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #236: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #237: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/lib/application. php:187 #238: Bitrix\Main\Application->terminate(integer) /home/bitrix/www/bitrix/modules/main/lib/application.php:174 #239: Bitrix\Main\Application->end() /home/bitrix/www/bitrix/modules/main/tools.php:3885 #240: LocalRedirect(string, string) /home/bitrix/www/bitrix/php_interface/init.php:632 #241: CYakusHandlers::OnAfterEpilog() /home/bitrix/www/bitrix/modules/main/classes/general/module.php:465 #242: ExecuteModuleEventEx(array) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487 #243: CAllMain::RunFinalActionsInternal() /home/bitrix/www/bitrix/modules/main/classes/general/main.php:3465 #244: CAllMain::FinalActions(string) /home/bitrix/www/bitrix/modules/main/include/epilog_after.php:54 #245: require(string) /home/bitrix/www/bitrix/modules/main/include/epilog.php:3 #246: require_once(string) /home/bitrix/www/bitrix/footer.php:4 #247: require(string) /home/bitrix/www/404.php:53 #248: require(string) /home/bitrix/www/bitrix/modules/iblock/lib/component/tools.php:66 #249: Bitrix\Iblock\Component\Tools::process404(string, boolean, boolean, boolean, string) /home/bitrix/www/bitrix/components/bitrix/news/component.php:145 #250: include(string) /home/bitrix/www/bitrix/modules/main/classes/general/component.php:605 #251: CBitrixComponent->__includeComponent() /home/bitrix/www/bitrix/modules/main/classes/general/component.php:680 #252: CBitrixComponent->includeComponent(string, array, boolean, boolean) /home/bitrix/www/bitrix/modules/main/classes/general/main.php:1039 #253: CAllMain->IncludeComponent(string, string, array, boolean) /home/bitrix/www/articles/index.php:132 #254: include_once(string) /home/bitrix/www/bitrix/modules/main/include/urlrewrite.php:159 #255: include_once(string) /home/bitrix/www/bitrix/urlrewrite.php:2

аналитика, советы, помощь с выбором материалов.

[Error] 
Maximum function nesting level of '256' reached, aborting! (0)
/home/bitrix/www/bitrix/modules/main/lib/config/option.php:430
#0: Bitrix\Main\Config\Option::getDefaultSite()
	/home/bitrix/www/bitrix/modules/main/lib/config/option. php:43
#1: Bitrix\Main\Config\Option::get(string, string, string, boolean)
	/home/bitrix/www/bitrix/modules/main/classes/general/option.php:30
#2: CAllOption::GetOptionString(string, string, string)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:2699
#3: CAllMain->get_cookie(string)
	/home/bitrix/www/bitrix/modules/main/lib/composite/engine.php:1321
#4: Bitrix\Main\Composite\Engine::onEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:480
#5: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/tools.php:3880
#6: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#7: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#8: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#9: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#10: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#11: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#12: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#13: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#14: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#15: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#16: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#17: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#18: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#19: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#20: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main. php:3487
#21: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#22: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#23: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#24: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#25: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#26: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#27: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#28: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#29: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#30: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#31: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#32: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#33: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#34: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#35: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#36: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#37: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#38: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#39: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#40: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application. php:174
#41: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#42: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#43: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#44: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#45: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#46: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#47: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#48: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#49: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#50: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#51: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#52: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#53: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#54: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#55: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#56: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#57: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#58: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#59: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#60: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#61: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#62: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#63: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#64: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#65: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#66: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#67: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#68: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#69: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#70: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#71: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#72: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#73: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#74: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#75: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#76: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#77: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#78: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#79: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#80: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#81: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#82: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#83: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#84: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#85: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#86: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#87: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#88: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#89: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#90: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#91: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#92: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#93: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#94: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#95: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#96: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#97: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#98: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#99: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#100: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#101: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#102: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#103: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#104: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#105: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#106: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#107: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#108: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#109: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#110: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#111: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#112: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#113: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#114: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#115: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#116: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#117: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#118: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#119: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#120: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#121: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#122: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#123: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#124: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#125: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#126: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#127: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#128: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#129: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#130: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#131: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#132: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#133: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#134: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#135: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#136: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#137: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#138: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#139: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#140: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#141: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#142: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#143: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#144: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#145: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#146: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#147: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#148: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#149: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#150: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#151: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#152: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#153: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#154: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#155: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#156: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#157: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#158: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#159: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#160: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#161: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#162: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#163: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#164: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#165: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#166: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#167: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#168: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#169: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#170: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#171: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#172: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#173: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#174: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#175: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#176: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#177: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#178: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#179: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#180: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#181: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module. php:465
#182: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#183: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#184: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#185: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#186: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#187: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#188: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#189: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#190: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#191: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#192: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#193: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#194: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#195: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#196: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#197: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#198: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#199: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#200: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#201: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application. php:187
#202: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#203: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#204: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#205: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#206: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#207: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#208: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#209: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#210: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#211: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#212: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#213: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#214: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#215: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#216: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#217: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#218: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#219: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#220: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#221: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools. php:3885
#222: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#223: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#224: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#225: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#226: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#227: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#228: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#229: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#230: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#231: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#232: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#233: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#234: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#235: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#236: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#237: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/lib/application.php:187
#238: Bitrix\Main\Application->terminate(integer)
	/home/bitrix/www/bitrix/modules/main/lib/application.php:174
#239: Bitrix\Main\Application->end()
	/home/bitrix/www/bitrix/modules/main/tools.php:3885
#240: LocalRedirect(string, string)
	/home/bitrix/www/bitrix/php_interface/init.php:632
#241: CYakusHandlers::OnAfterEpilog()
	/home/bitrix/www/bitrix/modules/main/classes/general/module.php:465
#242: ExecuteModuleEventEx(array)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3487
#243: CAllMain::RunFinalActionsInternal()
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:3465
#244: CAllMain::FinalActions(string)
	/home/bitrix/www/bitrix/modules/main/include/epilog_after.php:54
#245: require(string)
	/home/bitrix/www/bitrix/modules/main/include/epilog.php:3
#246: require_once(string)
	/home/bitrix/www/bitrix/footer.php:4
#247: require(string)
	/home/bitrix/www/404.php:53
#248: require(string)
	/home/bitrix/www/bitrix/modules/iblock/lib/component/tools.php:66
#249: Bitrix\Iblock\Component\Tools::process404(string, boolean, boolean, boolean, string)
	/home/bitrix/www/bitrix/components/bitrix/news/component.php:145
#250: include(string)
	/home/bitrix/www/bitrix/modules/main/classes/general/component.php:605
#251: CBitrixComponent->__includeComponent()
	/home/bitrix/www/bitrix/modules/main/classes/general/component.php:680
#252: CBitrixComponent->includeComponent(string, array, boolean, boolean)
	/home/bitrix/www/bitrix/modules/main/classes/general/main.php:1039
#253: CAllMain->IncludeComponent(string, string, array, boolean)
	/home/bitrix/www/articles/index.php:132
#254: include_once(string)
	/home/bitrix/www/bitrix/modules/main/include/urlrewrite.php:159
#255: include_once(string)
	/home/bitrix/www/bitrix/urlrewrite.php:2

Ремонт насосной станции своими руками: частые неисправности

Вода поступает рывками

Одна из причин поломок насосных станций – пересыхание скважины

Причины работы насосной станции рывками:

  • пересыхание скважины;
  • скачки давления или напряжения;
  • повреждение мембраны;
  • ошибки при обустройстве скважины.

Засорение насосной станции приводит к остановке работы. Давление при этом падает и частички мусора отлипают от входного отверстия. Устройство снова включается и затягивает грязь, что опять приводит к остановке двигателя. При этом в доме вода будет идти рывками.

Если с самого начала оборудование работает неравномерно, значит вся магистраль смонтирована неправильно – есть утечки. Нельзя засыпать трубы землей, пока не протестирован насос, иначе потом придется раскапывать снова и осматривать весь участок.

Проверяют также соответствие диаметра трубы высоте всасывания. Одновременно необходимо проверить скважину, не уменьшилась ли ее производительность – возможно, потребуется очистить ее от ила.

На участке от всасывающего до входного патрубка может наблюдаться подсос воздуха. Насосная станция в таком случае работает, но воду подает рывками. Исправляется ситуация заглублением трубы в скважину. Если не помогает, значит нарушена герметичность всасывающей трубы – ее достают, проверяют и ремонтируют.

Не происходит забор воды насосом

Когда обнаружилось, что насос не качает воду, одной из причин может оказаться не отрегулированное правильно в нем давление. Устранение возникшей проблемы осуществляется по схеме:

  • из электросети выключается насосная станция;
  • производится слив воды из водяного бака;
  • измеряется давление воздуха в баке через ниппель автомобильным насосом с манометром или компрессором, его оптимальное значение — 90-95%;
  • накачивается воздух в систему водоснабжения.
  • заливается вода в станцию;
  • присоединяется к сети с контролем давления.

Воздух в системе водоснабжения накачивается следующим образом. Изымается крышка с реле давления путем снятия пластикового винта и сменой силы затяжки имеющихся пружин узла. Поворотом одной гайки происходит включение нижнего значения насоса. Вращение по часовой стрелке способствует увеличению давления, а поворот против часовой стрелки способствует тому, что давление падает.

Поворот другой гайки регулирует диапазон давления между нижней и верхней границами значений. Границы диапазона изменяются поворотом элемента по часовой стрелке для расширения, против — для его уменьшения. После проделанных шагов насосная станция включается в электросеть, и проверяется ее работоспособность.

Насосная станция работает (насос крутится), но воды нет:

Шаги по устранению этой неисправности следующие:

  • В первую очередь нужно проверить обратный клапан, который находится в воде в скважине или колодце. Часто бывает, что в него попадает песок или мусор, и клапан не закрывается. При этом вода не поднимается по трубам до насоса.
  • Во-вторых, проверить наличие воды в трубопроводе между колодцем и насосом. Насос также должен быть заполнен водой; если воды нет – залейте через заливное отверстие.
  • Очень большая выработка между крыльчаткой и корпусом насоса. Насос просто работает сам на себя. Причина этого может заключаться в большом содержании в воде абразивных веществ, например, песка. В этом случае следует поменять корпус и крыльчатку, если они есть в продаже, или целиком насос (но не всю станцию!).
  • Банально кончилась вода в скважине/колодце. Выход – попробовать опустить глубже всасывающий трубопровод или шланг. Но помните: расстояние от уровня воды в скважине до насоса не должно превышать указанную на насосе, обычно 8-9 м.

Виды насосных станций

НС могут отличаться по различным признакам:

  1. Тип насоса: в зависимости от глубины источника применяют самовсасывающие насосы (до 8 м) и погружные. По виду нагнетательного механизма большинство относится к центробежному типу, но среди погружных моделей часто попадаются вибрационные.
  2. Вид автоматики: если расход воды осуществляется исключительно в продолжительном режиме, например, для полива, вместо реле давления на НС устанавливают датчик протока. Он включает насос с началом разбора воды (реагирует на движение среды в трубе) и отключает по его окончании. Гидроаккумулятор в такой НС не используется. Некоторые модели НС с датчиками протока и без накопителя можно использовать и в обычном домашнем водопроводе. Они комплектуются усовершенствованной автоматикой, которая «умеет» осуществлять плавный пуск/останов двигателя насоса и менять его мощность. При наличии таких функций часты включения становятся агрегату не страшны.
  3. Тип гидроаккумулятора.

Насосная станция работающая

В НС применяют два типа гидроаккумуляторов:

  • баллонные: вода закачивается в резиновую «грушу»;
  • мембранные: объемы для воздуха и воды разделены эластичной мембраной.

Также накопители могут отличаться объемом. При этом надо учесть, что в спецификации указывается объем всего бака, а не имеющегося в нем резервуара для воды.

С принципом работы биотуалета для дачи вы можете ознакомиться здесь.

Советы по изготовлению вакуумного пресса своими руками читайте в этой публикации.

Принцип работы насосной станции

Зная все элементы, которые создают рассматриваемую систему, можно подробно рассмотреть принцип ее работы. Он довольно прост:

  1. Станция запускается на момент открытия крана. При этом в системе начинает падать давление.
  2. Вода, которая была набрана в гидрокомпенсатор, возвращается в систему для поддержания давления. Если кран открыт на протяжении длительного периода, давление падает до отметки, при которой срабатывает реле и насос включается.
  3. При закрытии крана давление резко повышается. За счет этого происходит заполнение бака насосной станции и реле размыкает контакты.

Схема подключения насосной станции

За счет подобного принципа работы снижается вероятность прерывистой работы системы при одновременном открытии нескольких кранов.

Почему насосная станция не включается, какие бывают причины

Насосы водоснабжения, как и любое другое устройство не могут работать вечно. При постоянном использовании насосная станция периодически может выходить из строя. И для быстрого восстановления подачи воды, необходимо будет провести ремонт оборудования. Станете Вы вызывать мастера или делать это самостоятельно, решайте сами. Мы расскажем, почему насосная станция не включается, какие бывают причины неполадок и как их исправить в минимально короткие сроки.

Прежде, чем проводить ремонтные работы, Вы должны знать, какую конструкцию имеют водяные насосы.

Самые распространенные неисправности

Чтобы избежать частой починки данной конструкции в процессе эксплуатации, необходимо придерживаться советов мастеров на этапе ее монтажа. Также, не забывайте о правильной эксплуатации насосной станции.

Теперь о том, почему насосная станция не включается, какие бывают причины:

  • насос работает, но нет воды (возможно проблемы с обратным клапаном, нет воды в трубопроводе или закончилась вода в скважине),
  • насос работает с перерывами, часто включается/выключается (может отсутствует давление воздуха в гидробаке или разорвалась диафрагма),
  • станция качает воду с перебоями (неисправность трубопровода, возможно подсос воздуха),
  • оборудование работает, но не выключается (неисправно реле давления),
  • станция не включается (возможно подгорели контакты реле давления либо вышел из строя мотор, конденсатор пусковой, нарушена целостность обмотки),
  • станция не крутиться и гудит (склеилась крыльчатка насоса с корпусом из-за того, что оборудованием долгое время не пользовались, может сломался конденсатор или низкое напряжение в сети).

Некоторые из перечисленных неисправностей насосной станции можно легко исправить самому. Вы можете заняться чисткой фильтра или обратного клапана от песка и другого мелкого мусора. Но, когда нужно произвести замену груши в гидроаккумуляторе или мембраны, лучше доверить это дело мастерам.

Правила фиксации насоса

Эффективная и бесперебойная работа любого типа оборудования, в том числе устройств водоснабжения будет напрямую зависеть от монтажа и режима эксплуатации. Мы ответили на вопрос: почему водяной насос не запускается, какая причина может быть. Долговечность насосной станции будет зависеть от того кто и как устанавливал ее.

Ремонт своими руками

Рассмотрим этапы некоторых ремонтных работ.

Замена груши гидроаккумулятора

Часто проводится ремонт путем замены мембраны. Для этого проводится демонтаж гидроаккумулятора и самого уплотнительного элемента:

  1. Фланец снимается.
  2. Мембрана вынимается.
  3. Бак промывается.

Замена мембраны в насосной станции

После этого новая мембрана устанавливается на свое место. Заключительный этап ремонта – сборка и установка расширительного бака на свое место.

Регулировка реле давления

К сожалению, эта деталь не поддаётся ремонту, ее можно только заменить или отрегулировать. На корпусе датчика есть два штурвала. Большой служит для поднятия давления в системе. Маленький регулирует интервал включения насоса. Подкручивая их, выбираете диапазон работы устройства.

Реставрация или замена крыльчатки

  1. Для замены рабочего колеса необходимо разделить двигатель и камеру подачи воды, открутив несколько болтов на фланце.
  2. Крыльчатка крепится на штоке и прижимается гайкой.
  3. Откручиваем ее и снимаем диск.
  4. Сборку производим в обратном порядке.

Замена гидроаккумулятора

  1. Расширительный бак имеет вид металлического бочонка с запайным корпусом. Внутри груши расположен резиновый мешок, в который при повышении давления в системе поступает вода.
  2. Если диагностика выявила поломку именно в гидроаккумуляторе, его нужно снять, открутив контргайку на шланге, ведущем в насос.
  3. Заменяемая деталь в баке — это ниппель для накачки воздуха и резиновый мешок для воды.
  4. Замена происходит путем откручивания тыльной крышки груши.

Замена сальника

  1. Следуя пункту 3, разбираем насос.
  2. Сняв крыльчатку, доберемся до сальника.
  3. Снять его можно, нагрев или расплавив газовой горелкой или строительным феном.
  4. Остатки грязи или ржавчины счищаем и запрессовываем новый сальник.

Замена подшипника

  1. Следуя инструкции, указанной выше, совершаем поэтапный полный разбор устройства.
  2. Вытаскиваем якорь двигателя через заднюю крышку.
  3. На валу расположены два подшипника, по обоим концам стержня.
  4. Чтобы вынуть их, вал придется нагреть горелкой.

Новые кольца надеваем на старое место, предварительно почистив стержень от ржавчины.

Как работает насосная станция

Конструкция насосной станции состоит из трех узлов:

  • Самого насоса (вибрационного или центробежного типа).
  • Накопительной емкости (бака или аккумулятора).
  • Реле управления (поплавкового типа или на датчике давления).

И все вышеупомянутые узлы взаимодействуют между собой следующим образом:

Насосная станция в работе

  • Насос закачивает воду из скважины в бак или аккумулятор.
  • Датчик давления включает насос при минимальном уровне воды в баке или аккумуляторе и отключает – при максимальном уровне. Причем в баке работает механический датчик поплавкового типа, а в гидроаккумуляторе с эластичной мембраной функционирует электронный датчик давления.

Бак или аккумулятор принимает воду от насоса, накапливает ее и отдает потребителю. То есть, с внутренним водоводом связана именно эта часть насосной станции.

И, разумеется, поломки или сбои в работе хотя бы одного узла приведут к остановке работы всей станции. Ведь каждый элемент конструкции такого агрегата имеет равнозначное влияние на его функциональность.

Как правильно разобрать

Отключив от электричества, приступаем к раскрутке и отсоединению всех шлангов подачи и нагнетания жидкости. Разборка устройства осуществляется поэтапно:

Первый этап. Разделяем качающий узел от электродвигателя.

  • Крепится мотор на четыре болта, фиксирующих юбку фланца агрегата.
  • Открутив болты, легким постукиванием по фланцу снимаем двигатель.
  • Отделив соединение, станет видно вращательную втулку.
  • Получается две части станции: на одной рабочее колесо с распределительным узлом, на другой – мотор.
  • Резиновую прокладку аккуратно вынимаем и протираем влажной тряпкой.
  • Вал в двигателе нужно провернуть, чтобы посмотреть, все ли подшипники вращаются.

Второй этап. Снимаем крышку реле старта.

  • Обычно крепеж состоит из одного-двух винтов, закручиваемых крестовой отверткой. Под крышкой скрывается вся подноготная.
  • Два штурвала с пружинами для регулировки давления.
  • Реле управления подачи энергии на блок.
  • Снимаем защитный кожух вентилятора охлаждения двигателя. Часто экран ничем не фиксируется, а просто насаживается на заднюю стенку мотора.
  • Иногда есть пара мелких шурупов, которые без труда можно выкрутить.

Третий этап. Откручиваем прижимную гайку рабочего колеса и снимаем диск с оси.

  • Вынимая вал, придется тихонько по нему постучать молотком со стороны крыльчатки.
  • Ось выйдет вместе с вентилятором охлаждения и подшипниками.

Четвертый этап. Разбор распределительной камеры насоса.

Корпус изготовлен из чугуна или стальной, очень редко встречается нержавеющий металл.

  • Разделив станцию на две части, уже станет видно всю внутреннюю часть камеры смешивания.
  • Откручиваем все сопутствующие патрубки для прочистки резьбовых соединений.

В результате проделанной работы мы получим полностью разобранное устройство. Теперь можно приступать к диагностике каждого узла по отдельности и устранению неполадок.

Из чего она состоит?

Среднестатистическая насосная станция имеет три главные составляющие, а именно:

  • насосное устройство;
  • гидроаккумулятор;
  • блок автоматики.

Теперь рассмотрим каждый элемент более детально.

Насосное устройство

Оснащаются станции водоснабжения чаще всего поверхностными насосами, чьи названия говорят о своем расположении. Устанавливают их в специально оборудованных ксенонах, или же внутри жилых помещений. Используются насосы с довольно высокой мощностью, поскольку она необходимая для поднятия воды из скважин и транспортировки ее в дом.

Для обслуживания одного дома хватит и небольшого устройства

Гидроаккумулятор

Гидроаккумулятор (его еще называют аккумулятором давления) – это металлическое устройство, цель которого состоит в поддерживании определенного уровня давления на постоянной основе. К самым популярным можно отнести модель, представляющую собой небольшой баллон из металла, внутри которого установлена упругая мембрана. В процессе работы резиновая мембрана деформируется до определенной отметки. При остановке работы она возвращается в исходное положение, вытесняя при этом жидкость из баллона.

Устройство гидроаккумулятора

Блок автоматики

Предназначен он для своевременного прекращения работы устройства. Работает следующим образом:

  • до определенной отметки снижается давление;
  • начинает срабатывать реле;
  • в игру вступает насос, и гидроаккумулятор начинает заполняться водой;
  • по достижению оптимального давления работа устройства приостанавливается.

Как вы уже успели заметить, насосная станция является сочетанием узлов и агрегатов, работа которых возможна и по отдельности. В большинстве случаев все основные узлы агрегата устанавливаются на одном корпусе, однако существуют и модели, в которых насосное устройство устанавливается на аккумуляторе давления. Устройство автоматического управления также располагается на одном корпусе.

Блок автоматики для насоса

На протяжении всего гарантийного срока проблем с оборудованием при эксплуатации практически не возникает. Но это вовсе не значит, что вам не придется столкнуться с необходимостью устранения неполадок различных узлов. При длительном эксплуатационном периоде любая часть механизма может сломаться, поэтому нужно быть готовым ко всему происходящему. Давайте разберемся с возможными причинами поломки и вариантами устранения этих неполадок.

Как устроено насосное реле и как его настроить?

Перед тем, как отрегулировать реле давления, стоит разобраться с его конструктивными особенностями и принципом работы.

Реле уровня жидкости – устройство на основе металла, в нижней части которого есть мембранная крышка со специальным крепежом, который можно быстро снять. На верхней части реле протока воды есть несколько контактов и пара регуляторов.

Сверху все эти элементы прикрыты крышкой. Последняя прикреплена к одному из регуляторов. Вся эта конструкция быстросъемная – разбор устройства можно произвести с помощью обыкновенного гаечного ключа.

Производители предлагают разные реле по форме, размерам, расположению рабочих элементов, небольшими отличиями в конструктивных особенностях деталей. Нередко эти устройства дополняются предохранителями от «холостой работы».

Как работает?

Реле насосной станции работает по принципу, основанному на давлении жидкости, попадающей от насоса – мембрана двигает поршень, активизирующий контакты, расположенные на основании из железа с двумя шарнирами.

Контакты эти могут замыкаться и размыкаться (в зависимости от положения) – это обеспечивает автоматическое включение/выключение оборудования. Второй регулятор, при этом, стабилизирует поршневое давление.

Электрика устройства (отвечающая за включение/выключение насоса) «слушает» пружинный шарнир. Как только реле давление РМ (или реле давления РДМ5) поднимается выше шарнира, регуляторы перещелкиваются.

Так, один регулятор (большой) включает насосное оборудование, а второй, более мелкий, отвечает за деактивацию ввиду перепадов давления в устройстве.

Как отрегулировать самому?

Если по любой причине первичная настройка реле давления вас не устраивает, тогда самое время подключать свои руки с опытом, и настраивать реле уровня воды своими руками. Настройка реле насосной станции своими руками – довольно простая процедура. Нам понадобится только накидной ключ и отвертка.

Последовательность регулировки насосной станции своими руками:

  1. Обесточить устройство.
  2. Демонтировать панель устройства.
  3. Установить необходимый напор.
  4. Собрать отрегулированный агрегат.

Помните! Под крышкой есть два регулятора – крупный и мелкий. Первый работает с давлением на активации насоса, второй отвечает за разность давлений и выключение системы.

Повышаем/понижаем системное давление

Все просто – чтобы поднять или понизить давление в гидроаккумуляторе, нужно ослаблять или затягивать гайку на крупном регуляторе. Такая настройка реле давления гидроаккумулятора самая быстрая и простая.

Внимание! Настройка реле насосной станции своими руками должна проводиться строго с выключенным оборудованием. Перед началом обесточьте систему!

Далее включаем настроенный прибор и смотрим по манометру установлений нижний предел давления. Также проверяем давление на отключение. Если новые показатели реле давления воздуха для компрессора вас удовлетворяют, то процесс настройки можно считать завершенным.

Важные тонкости при настройке

Любая автоматика для насоса требует своевременного выявления неисправности и соблюдения рабочей «правильной» температуры. Ремонт реле давления насосной станции – крайняя мера, и оправдана она только при очень высокой стоимости новой детали.

Поэтому, очень важно уметь самому проводить регулировку оборудования, при которой обязательно учитывать важные тонкости:

  • регулируя реле, нельзя ставить верхнее давление, превышающее предел для этой модели на 75% – это гарантировано приведет к неисправности. Единственный выход в такой ситуации – замена комплектующей;
  • прежде, чем повышать давление, стоит ознакомиться с рабочими параметрами вашего устройства – посмотреть, выдержит ли насос. Если указать давление намного меньше, чем в паспорте устройства, то поломка также гарантирована, ведь срабатывает реле теперь постоянно;
  • свой насос нужно регулировать аккуратно – не закручивать болты до упора, иначе реле будет работать постоянно.

Основные причины неисправностей

Давайте мысленно пройдемся по НС и посмотрим, что может вызвать сбои в ее работе.

Всасывающая магистраль (для систем с самовсасывающими насосами)

После отключения агрегата она удерживается обратным клапаном, установленным в начале водозаборной трубы.

При длительных простоях насос приходится заливать заново.

Если вы ищете самовсасывающий насос, который не нужно заливать, выбирайте агрегат вихревого типа. Однако, учтите, что у него очень низкий КПД.

Отсутствие воды во всасывающей магистрали может быть обусловлено такими причинами:

  • вода в источнике опустилась ниже заборного патрубка;
  • нарушена работа обратного клапана;
  • в магистрали появились трещины или зазоры, через которые в нее попал воздух (произошел разрыв водяного столба).
Симптомы

Если НС оборудована датчиком сухого хода, насос автоматически отключится. В противном случае он будет работать (до срабатывания защиты по перегреву), но вода поступать не будет.

Насос

С главным элементом НС могут случиться такие неприятности:

  • залипание рабочего колеса: слышится гудение, но двигатель не вращается;
  • вышел из строя конденсатор: признаки те же самые;
  • из-за износа корпуса и рабочего колеса насос не может развить в трубопроводе напор, при котором срабатывает реле давления: агрегат не отключается даже при нулевом расходе воды;
  • сгорел двигатель: агрегат не включается, слышен запах горелой изоляции.

Насосная станция с встроенным эжектором

Реле давления

Чаще всего реле перестает функционировать по следующим причинам:

  • на контактах накопилась грязь, препятствующая электрическому соединению: насос перестал включаться;
  • произошло засорение присоединительного патрубка: реле перестает реагировать на изменение давления в водопроводе;
  • ослабли пружины, в результате чего «поплыли» границы рабочего диапазона давлений.

Реле давления в разобранном виде

  • реле размещено в доме рядом с гидроаккумулятором, то есть пробка образовалась где-то между ним и насосом: закачка воды в гидроаккумулятор стала занимать больше времени, чем обычно;
  • реле установлено рядом с насосом, то есть оно находится между ним и пробкой: агрегат работает рывками (частые включения/отключения).

Состав насосной станции и назначение частей

  • 1 Состав насосной станции и назначение частей
  • 2 Проблемы и неисправности насосных станций и их исправление
    • 2.1 Не отключается насосная станция (не набирает давление)
    • 2.2 Ремонт насосной станции: часто включается
    • 2.3 Воздух в воде
    • 2.4 Насосная станция не включается
    • 2.5 Мотор гудит, но не качает воду (крыльчатка не вращается)
  • 3 Некоторые виды ремонтных работ

Насосная станция — совокупность отдельных устройств, соединенных между собой. Чтобы понимать, как ремонтировать насосную станцию, надо знать из чего она состоит, и как работает каждая из частей. Тогда и неисправности устранять проще. Состав насосной станции:

Каждая из частей отвечает за определенный параметр, но один тип неисправности может быть вызван выходом из строя различных устройств.

Принцип работы насосной станции


Теперь давайте рассмотрим, как все эти устройства работают. При первом запуске системы насос накачивает в гидроаккумулятор воду до тех про, пока давление в нем (и в системе) не сравняется с выставленным на реле давления верхним порогом. Пока нет расхода воды, давление стабильно, насос выключен.

Каждая из частей выполняет свою работу

Где-то открыли кран, спустили воду и т.п. Какое-то время вода поступает из гидроаккумулятора. Когда ее количество уменьшается настолько, что давление в гидроаккумуляторе падает ниже порога, включается насос, снова накачивая воду. Если при этом идет постоянный расход (набирается ванна, включен полив саде/огорода) насос работает продолжительное время: пока в гидроаккумуляторе не создастся нужное давление. Это периодически происходит даже при открытых кранах, так как насос подает воды больше, чем вытекает из крана. После того, как расход прекратился, он еще некоторое время работает, создавая в гироаккумуляторе требуемый запас, потом отключается и включается после того как появляется расход воды.

Насос качает воду без перерыва

Есть несколько причин, из-за которых насосная станция не отключается после набора воды. Одна из них – засорение входного отверстия в корпусе реле давления. Прежде чем начинать искать более серьезную причину, необходимо проверить, не попал ли мусор в блок автоматики и не мешает ли срабатывать контактам. Возможно также окисление контактов. Блок разбирают, контакты зачищают и все собирают в обратном порядке.

Вторая причина – утечка жидкости. В таком случае давление не может подняться до своего максимального значения, что не дает сработать контактам на отключение оборудования. Чаще всего утечки бывают в аккумуляторном блоке. Если смазать его мыльным раствором или пеной для бритья, можно определить место утечки. Для герметизации необходимо обезжирить участок и провести пайку. Утечка может произойти из-за нарушения одного из стыков магистрали. Из трещины будет постоянно вытекать вода – чтобы поддерживать нужное давление насосной станции придется работать в непрерывном режиме. Искать проблемное место нужно сразу, так как двигатель может сгореть из-за постоянных перегрузок и отсутствия охлаждения.

Одной из частых причин несвоевременного отключения двигателя является разрыв резиновой мембраны внутри корпуса гидроаккумулятора. Это может быть заводской брак или неправильные настройки реле. При очень высоком верхнем пороге давления резина не выдерживает и лопается. Устранить неполадку можно только установкой новой мембраны и регулировкой реле.

Поврежденную резиновую мембрану можно завулканизировать. Для этого ее снимают, ремонтируют и ставят обратно.

Если на входе стоит фильтр и он забился частицами глины/песка, станция может долго не выключаться, пока не наберет воду и давление не поднимется до нужного уровня. В таком случае фильтр нужно почистить или заменить.

Устройство и характеристики насосной станции

Агрегат сильно отличается от погружника в первую очередь своими объемами и принципом работы. Рабочие элементы комплекса:

  1. Мощная помпа. Именно она поднимает жидкость из глубины скважины или колодца и подает в водопроводную сеть. Все остальные элементы обеспечивают его правильную работу. Первое и единственное назначение – выкачивание жидкости из водоносной жилы.
  2. Шланг или труба. Крутящий момент рабочего колеса создает вакуумную среду внутри шланга, и вода устремляется наверх к крыльчатке. Здесь происходит ее захват и проталкивание дальше в систему.
  3. Обратный клапан. Располагается на шланге возле самого агрегата или непосредственно в скважине. Предназначен для остановки жидкости после выключения насоса.
  4. Фильтр грубой очистки. Имеет вид железной или пластмассовой пробки с сетчатым основанием. Задерживает крупные и мелкие частицы ила и глины в зависимости от величины ячейки. Предохраняет оборудование от засора, преимущественно крыльчатку.
  5. Реле замера давления в магистрали. Без этого прибора устройство не будет работать. Датчик установлен у основания расширительного бака. Когда происходит забор воды, давление в системе падает, реле регистрирует этот процесс и дает команду помпе на включение. Поэтому кабель питания не идет напрямую в сеть, а проходит через датчик давления. Шаг включения 1,5–2 очка.
  6. Манометр. Служит контроллером давления в системе. Показывает любые изменения после включения и выключения агрегата.
  7. Расширительный бак. Регулирует плавное включение насоса. Без него оборудование будет работать рывками, постоянно включаясь и отключаясь.

Насосные станции повышения давления и пожаротушения

Индивидуальные решения насосных станций.

 Станции повышения давления являются насосными установками, служащими для увеличения давления воды в водопроводе. Применяются для автоматического водоснабжения и повышения давления в жилых, административных зданиях, гостиницах, больницах, торговых комплексах, на промышленных объектах и в системах пожаротушения. Задача установки повышения давления – поддержание заданного давления в напорном коллекторе.

Технические данные:

Производительность установок – до 750 м3/ч
Напор установок– до 145 м
Количество насосов – от 2 до 6 шт
Температура перекачиваемой жидкости – до 70° С (по запросу до 120° С)
Максимальное рабочее давление – 1,6 МПа

 Станции поставляются заказчику полностью в готовом виде для дальнейшего подключения к источнику питания и трубопроводу. Все станции проверяются и испытываются на производстве до поставки. Проектирование оборудования, подбор компонентов и производство оптимизируются для простоты использования и обслуживания.

Насосная станция повышения давления
с 4-мя насосами WILO MVI 7003

Оборудование:

В станции используется высококачественное и надежное оборудование и приборы от известных производителей. Насосная станция может быть скомпонована минимум из двух насосов — максимум из шести. По желанию заказчика повысительная станция может быть укомплектована как импортными насосами, так и насосами отечественного производства.  Автоматическое управление насосов, в стандартной комплектации, осуществляется по сигналу от датчика давления, установленного на напорном коллекторе. При увеличении количества потребителей воды давление в системе начнет снижаться. Когда давление упадет ниже заданного,  запускается первый насос и повышает давление. При дальнейшем увеличении потребителей воды производительности первого насоса становится недостаточно и давление в системе снова начнет снижаться. При достижении давления ниже заданного включается второй насос. По такой же схеме запускаются остальные насосы. Присутствующий в установке повышения давления резервный насос запускается автоматически в случае неисправности рабочего.

Пример стандартной комплектации повысительной станции:

1) Насос вертикальный 
2) Напорный коллектор
3) Всасывающий коллектор
4) Затвор на напорной линии
5) Затвор на всасывающей линии
6) Обратный клапан на напорной линии
7) Манометр на напорной линии
8) Шкаф управления
9) Гидроаккумулятор
10) Муфта виброкомпенсационная
11) Рама

  Учитывая требования заказчика и назначение станции повышения давления (пожаротушения или питьевого водоснабжения) рама, всасывающий и напорный коллектор могут быть изготовлены как из черного метала так и из нержавеющей стали AISI304.
    Возможно применение любой из перечисленных систем управления насосами:
1)  Прямой запуск насосов.

По сигналу от датчика давления насосы включаются напрямую от электрической сети.
Преимущества: низкая стоимость.
Недостатки: наличие гидроударов при включении-выключении насосов, низкая точность поддержания давления, необходим   гидроаккумулятор.

Применяется при отсутствии высоких требований к точности поддержания давления. Не рекомендуется для насосов мощностью свыше 11 кВт.

2. Запуск насосов по схеме звезда-треугольник.
По сигналу от датчика давления насосы включаются по схеме звезда-треугольник.
Преимущества: снижение скачков тока и сглаживание гидроударов при запуске насосов.
Недостатки: наличие гидроудара при выключении насосов, низкая точность поддержания давления, необходим гидроаккумулятор.
Применяется при отсутствии высоких требований к точности поддержания давления.
Рекомендуется для насосов мощностью 15 кВт и выше.

3. Управление насосами с помощью одного частотного преобразователя.

Это наиболее эффективный метод регулирования производительности насосов. Он уже прочно утвердился как стандарт в системах водоснабжения, поскольку дает серьезную экономию электроэнергии и высокую точность регулирования. Задача частотного преобразователя регулировать производительность. Если необходимо увеличить производительность насоса частотный преобразователь увеличивает частоту вращения насоса, если необходимо уменьшить производительность – уменьшает.В результате чего достигается экономия электроэнергии? Одной из основных причин перерасхода электрической энергии установки повышения давления является избыточный напор, создаваемый насосом. При этом регулирование напора в водопроводной сети в большинстве случаев осуществляется закрытием/открытием задвижки на напорном коллекторе. В итоге мощность необходимая для создания избыточного напора тратится на преодоление сопротивления неполностью открытой задвижки. При управлении насосом с помощью преобразователя частоты насос создает именно тот напор, который необходим в данной точке водопроводной сети. Задвижка на напорном коллекторе полностью открыта и не создает дополнительного сопроти-

вления в трубопроводе. Помимо отсутствия необходимости тратить электроэнергию на создание избыточного напора, необходимо также учитывать, что очень много водопроводных сетей в нашей стране находится в ветхом состоянии. Поэтому даже небольшое увеличение напора многократно увеличивает вероятность аварии трубопровода, что также влечет за собой значительные финансовые затраты. Применение преобразователя частоты в установках повышения давления позволяет не только стабилизировать напор в сети, но и добиться необходимой плавности его изменения при включении и выключении насоса.Алгоритм работы:
По сигналу от датчика давления частотный преобразователь плавно разгоняет первый насос. С ростом потребления воды частота увеличивается. При достижении максимальной частоты насос подключается напрямую к электрической сети (50 Гц). А частотный преобразователь отключается от этого насоса и начинает разгонять второй насос. Когда производительности двух насосов станет мало,        второй   насос   подключится   напрямую к электрической сети. Частотный преобразователь о тключится от  второго  насоса и

начнет разгонять третий насос. По такой же схеме включаются остальные насосы. Преимущества: экономия электроэнергии, высокая точность поддержания давления ±0,1 атм, минимальны гидравлические удары и перегрузки электрической сети. Применяется при высоких требованиях к точности поддержания давления. Рекомендуется для насосов мощностью до 55 кВт.

4. Управление насосами с помощью нескольких преобразователей частоты (по одному на каждый насос).
Этот способ управления обеспечивает наибольшую экономию электроэнергии и высокую точность поддержания давления. При данной схеме производительность установки повышения давления регулируется параллельным изменением частоты вращения всех включенных насосов. Рекомендуется для насосов мощностью до 200 кВт.

5. Управление насосами с помощью частотного преобразователя и прямой запуск резервного насоса.

Такая схема управления повышает надежность станции. При оптимальной экономии электроэнергии и высокой точности поддержания давления с  помощью насосов подключенных  к частотному преобразователю, повысительная станция имеет резервный насос с прямым запуском от электросети.

Преимущества: насосная станция сохраняет работоспособность при вышедшем из строя частотном преобразователе.

Расчет стоимости установки повышения давления

Вы можете оставить заявку для расчета стоимости станции повышения давления или пожаротушения с помощью формы обратной связи. В сообщении, по возможности, укажите:

1) Назначение водопроводной станции: 

  • Водоснабжение

  • Пожаротушение

  • Водоснабжение + пожаротушение

  • Отопление

2) Температура перекачиваемой жидкости:

от 0° до 70° С

от 71° до 180° С

3) Количество насосов для водоснабжения/пожаротушения:

4) Диаметр подводящего трубопровода

5) При заборе воды из резервуара или водоема укажите минимальный и максимальный уровень воды 

6) При заборе воды из городской сети укажите минимальное и максимальное давление на входе в насосную станцию P1min, P2max (атм)

7) Требуемое давление на выходе насосной станции (при водоснабжении), Р2 (атм)

8) Требуемое давление на выходе насосной станции (при пожаротушении), Р3 (атм)

9) Требуемая производительность насосной станции (при водоснабжении),(м3/ч)

10) Требуемая производительность насосной станции (только на пожарные нужды), (м3/час)

Насосная станция Джилекс Джамбо — одни преимущества

Все привыкли к словам “европейское качество”, но в отношении насосного оборудования русское далеко не всегда хуже европейского. Взять хотя бы насосные станции Джилекс Джамбо — в России они стали самым популярным решением для водоснабжения частного дома, если верить статистике Яндекса. Что особенного в этой серии?

25.11.2019

Все привыкли к словам “европейское качество”, но в отношении насосного оборудования русское далеко не всегда хуже европейского. Взять хотя бы насосные станции [ https://mirnasosov.ru/catalog/bytovoe_nasosnoe_oborudovanie/nasosnye_stantsii/ ]  Джилекс Джамбо — в России они стали самым популярным решением для водоснабжения частного дома, если верить статистике Яндекса. Что особенного в этой серии? Устройство насосной станции Джилекс Джамбо Джилекс Джамбо — это водоперекачивающий комплекс на основе одноименного насоса. Часто его называют “насос-автомат”, потому что он включается и выключается автоматически. Комплекс состоит из следующих элементов: — Насос Джилекс Джамбо [ https://mirnasosov.ru/catalog/bytovoe_nasosnoe_oborudovanie/poverkhnostnye_nasosy/dzhileks_2/ ] — поверхностный насос со внутренним эжектором. Он служит для подкачки чистой воды из скважин и колодцев, а также других типов водоемов с глубины не более 9 метров. Также насос создает давление в водопроводе частного дома. — Гидроаккумулятор [ https://mirnasosov.ru/catalog/bytovoe_nasosnoe_oborudovanie/gidroakkumulyatory_i_rasshiritelnye_baki/gidroakkumulyatory/ ] для накопления воды — позволяет сделать запас воды, чтобы не включать прибор каждый раз, когда кто-то моет руки. С гидробаком вода подается даже при отсутствии электричества.  Это цилиндрический бак, разделенный на 2 камеры: воды (внутренняя груша) и для воздуха (окружающее грушу пространство).. Воздушная камера позволяет регулировать давление в системе. В серии Джилекс Джамбо объем бака варьируется от 14 до 50 литров.  — Система автоматического управления станцией. В серии есть 2 варианта управления станцией: с контролем потока (осуществляется при помощи блока автоматики Джилекс) или регулировкой давления (при помощи реле давления и манометра). Характеристики насоса во многом определяют популярность станции на его основе. Джилекс Джамбо — центробежный, самовсасывающий насос. Его двигатель имеет принудительное воздушное охлаждение. Встроенный эжектор с трубами Вентури обеспечивает мощное всасывание. Из-за эжектора насос может поднимать воды с глубины до 9 метров. Для большинства приусадебных участков такие параметры вполне подходят. [ /upload/medialibrary/d44/d445edde6d37f23395740020cfeb43d8.jpg ] Источник изображения: официальный сайт Джилекс [ http://www.jeelex.ru/catalog/intellekt/dzhambodom/ ]   Принцип работы Джилекс Джамбо 1. В начале устройство включается в сеть и автоматика запускает двигатель насоса. 2. Внутри корпуса насоса приходит в движение рабочее колесо, которое создает разряженную область в центре камеры. Вода начинает поступать снизу по всасывающей магистрали. Она заходит в грушу гидроаккумулятора. 3. Вода одновременно выталкивается рабочим колесом в напорную магистраль. 4. В водяной магистрали постоянно поддерживается давление. Когда кран включается, давление в системе начинает падать. Когда давление упадет до заданной точки, реле включает работу насоса Джилекс Джамбо, и он начинает подкачивать воду, подавая ее на кран и затем заполняет гидробак. 5. Когда кран закрывается, и бак полностью наполнен, давление стабилизируется, и реле отключает двигатель. 6. Если вдруг давление по каким-то причинам начнет возрастать сверх нормы, то те же механизмы отключают прибор, чтобы уберечь от элементы системы от разрыва, а двигатель — от перегрева. Как видите, принцип работы насосной станции Джилекс Джамбо ничем не отличается от большинства подобных устройств. Что тогда обеспечивает его коммерческий успех? Материалы — Корпус насоса в зависимости от модели может быть изготовлен из таких материалов как: — Чугун — высокопрочный металл, защищающий внутреннее устройство от механических воздействий. Обычно его предпочитают остальным вариантам исполнения. Однако, по устойчивости к коррозии чугун не на первом месте. Для корпуса насоса Джилекс Джамбо металл обрабатывается от примесей с использованием электрофореза и окрашивают защитным лаком. — Нержавейка — корпус выполнен из нежавеющей стали Такие модели дороже, но при этом меньше подвержены коррозии.Важнго, что в магистрали со сиенками из нержавейки вода не обрастает металлическими и другими примесями.  — Полимер  — недорогой материал, который не влияет на качество воды. Также это самое простое и доступное по цене исполнение Джамбо.  [ /upload/medialibrary/4d8/4d85343c4d2a4482e5afecf6e8bd7fd1.jpg ] — Материал корпуса гидроаккумулятора — это листы нержавейки или углеродистая сталь. Окрашивают корпус в голубой специальной краской, которая дополнительно защищает бак от коррозии.  — Внутренняя часть гидробака — мембрана в виде баллона, которая раздувается и сжимается при накачке/расходовании воды. Материал изготовления — синтетический каучук, один из самых эластичных, устойчивых к  многократному растягиванию и сжиманию. Благодаря устройству бака, наличию сливного и отсечного кранов резервуар можно легко снимать со станции для обслуживания, например, для замены мембраны. Чем Джилекс Джамбо лучше конкурентов? Есть ряд решений в данной модели, которые делают автоматический насос эффективным, долговечным и относительно беспроблемным в эксплуатации. С такой конструкцией станция может длительно работать без перерывов. — Мощный мотор с системой охлаждения защищен от перегрева и работы вхолостую. — Главное преимущество насосной станции — мощное всасывание и стабильный высокий напор в водопроводе, который достигается с помощью внутреннего эжектора — Отсутствие вредных влияний на воду. Внутренние камеры насоса  изготовлены из инертных материалов, которые не вступают в реакцию с водой и не придают ей специфических свойств или привкуса.  — Плавный пуск устройства, а также работа с мембранного гидробака минимизируют риск гидроударов. — Относительно низкий уровень шума — Высокая степень герметичности. Класс защиты IP44 — комплекс пригоден для установки во влажных помещениях, защищен от проникновения воды и посторонних предметов в корпус. Как мы увидели, у этих насосов-автоматов российского производства есть масса преимуществ! Выбираете насосную станцию? В Мире Насосов в наличии есть все самые популярные модели Джилекс Джамбо [ https://mirnasosov.ru/catalog/bytovoe_nasosnoe_oborudovanie/nasosnye_stantsii/djileks_djambo/ ] . Не знаете, как выбрать? Обратитесь к нашему консультанту в окне диалога на сайте или позвоните по телефону +7 (831) 258-00-32 [ tel:+78312580032 ] . Мы обязательно подберем нужное устройство под ваши условия!

Может ли насосная станция поднять воду с глубины более 8 метров?

Неоспоримый факт, что поверхностный насос (в нашем случае насосная станция) из-за простых законов физики не может поднять воду с такой глубины. Какие существуют варианты замены насосной станции? Первый — это приобристи отдельно: погружной скважинный насос, гидроаккумулятор и реле давления. Второй вариант (применим при глубине залегания воды не более 25 м) — купить насосную станцию с внешним эжектором.

Внешний эжетор использует энергию уже поднятой воды. Часть потока отправляется обратно в скважину и создаёт там дополнительное давление, которое помогает поднимать воду захваченную эжектором. Для работы станции необходимы две заборных трубы диаметром 1 дюйм и 1 1/4″.

Правильная установка и подключение

Покупателю насосной станции с внешним эжектором следует знать, что аппарат очень требователен к качеству монтажа в заборной магистрали. Не должно быть даже мелких пузырьков воздуха! Трубы забора воды желательно монтировать строго вертикально в связи с большим объемом жидкости. В заборных трубах рекомендуем владельцу продумать крепление станции к полу, чтобы тяжелая магистраль не перевешивала аппарат.

Станция работает от однофазной сети 220 вольт. Для подключения заборной магистрали понадобятся две трубы, о которых мы говорили выше. Напорная труба должна быть диаметром 1 дюйм.

Состав станции

Насосная станция состоит из трех основных частей: блок автоматики; насосная часть и гидроаккумулятор.

Автоматика необходима для поддержания постоянного давления в системе водоснабжения. При открывании крана давление в системе начинает снижаться. При падении давления в системе до полутора бар автоматика включает закачку воды в бак. Когда давление достигает 3 бар забор воды прекращается.

Насос станции состоит из двух частей асинхронного двигателя и насосной части. Однофазный двигатель насоса отличается простотой и надежностью, охлаждение мотора организовано за счет установки вентилятора смонтированного на валу ротора. В насосной части находится полимерное рабочее колесо. Диффузор корпуса насосной части выполнен из чугуна. Чугунные корпуса насосов считаются самыми тихими и бюджетными вариантами исполнения.

Гидроаккумулятор представляет собой стальной цилиндр со сменной мембраной. Мембрана предустановленная в гидроаккумуляторе не предназначена для работы с горячей водой. Максимальная температура перекачиваемой жидкости не должна превышать 35 градусов цельсия. В торце гидробака находится ниппель для закачки в резервуар воздуха. Расчетное давление в баке станции должно составлять 1,82 атмосферы. Проверяется данный параметр обычным автомобильным манометром. В случае, если давление ниже нормы, воздух в бак нужно подкачать с помощью насоса. Кроме поддержания давления в системе и создании оперативного запаса воды гидроаккумулятор станции предназначен для предотвращения гидроудара.

Обслуживание и уход

Покупателю следует знать что станция не может работать без жидкости. Вода не только охлаждает механизмы насоса, но и выступает в качестве смазки. Продолжительная работа «всухую» может привести к повреждению уплотнителей и выходу станции из строя. Для предотвращения сухого хода рекомендуем приобрести специальный блок защиты. Небольшой узел, который монтируется на станцию, позволяет автоматически отключить аппарат в случае исчезновения воды и тем самым предотвратить поломку.

И напоследок несколько слов о работе насосных станций в зимнее время. Место установки станции и труб должны быть утеплены. При сезонном использовании воду из системы на зиму требуется слить, в противном случае возможны повреждения насосного узла, сальников и подшипников аппарата.

Bentley — Документация по продукту

MicroStation

Справка MicroStation

Ознакомительные сведения о MicroStation

Справка MicroStation PowerDraft

Ознакомительные сведения о MicroStation PowerDraft

Краткое руководство по началу работы с MicroStation

Справка по синхронизатору iTwin

ProjectWise

Справка службы автоматизации Bentley

Ознакомительные сведения об услуге Bentley Automation

Сервер композиции Bentley i-model для PDF

Подключаемый модуль службы разметки

PDF для ProjectWise Explorer

Справка администратора ProjectWise

Справка службы загрузки данных ProjectWise Analytics

Коннектор ProjectWise для ArcGIS — Справка по расширению администратора

Коннектор ProjectWise для ArcGIS — Справка по расширению Explorer

Коннектор ProjectWise для ArcGIS Справка

Коннектор ProjectWise для Oracle — Справка по расширению администратора

Коннектор ProjectWise для Oracle — Справка по расширению Explorer

Коннектор ProjectWise для справки Oracle

Коннектор управления результатами ProjectWise для ProjectWise

Справка портала управления результатами ProjectWise

Ознакомительные сведения по управлению поставками ProjectWise

Справка ProjectWise Explorer

Справка по управлению полевыми данными ProjectWise

Справка администратора геопространственного управления ProjectWise

Справка ProjectWise Geospatial Management Explorer

Ознакомительные сведения об управлении геопространственными данными ProjectWise

Модуль интеграции ProjectWise для Revit Readme

Руководство по настройке управляемой конфигурации ProjectWise

Справка по ProjectWise Project Insights

ProjectWise Plug-in для Bentley Web Services Gateway Readme

ProjectWise ReadMe

Матрица поддержки версий ProjectWise

Веб-справка ProjectWise

Справка по ProjectWise Web View

Справка портала цепочки поставок

Услуги цифрового двойника активов

PlantSight AVEVA Diagrams Bridge Help

PlantSight AVEVA PID Bridge Help

Справка по экстрактору мостов PlantSight E3D

Справка по PlantSight Enterprise

Справка по PlantSight Essentials

PlantSight Открыть 3D-модель Справка по мосту

Справка по PlantSight Smart 3D Bridge Extractor

Справка по PlantSight SPPID Bridge

Управление эффективностью активов

Справка по AssetWise 4D Analytics

AssetWise ALIM Web Help

Руководство по внедрению AssetWise ALIM в Интернете

AssetWise ALIM Web Краткое руководство, сравнительное руководство

Справка по AssetWise CONNECT Edition

Руководство по внедрению AssetWise CONNECT Edition

Справка по AssetWise Director

Руководство по внедрению AssetWise

Справка консоли управления системой AssetWise

Анализ моста

Справка по OpenBridge Designer

Справка по OpenBridge Modeler

Строительное проектирование

Справка проектировщика зданий AECOsim

Ознакомительные сведения AECOsim Building Designer

AECOsim Building Designer SDK Readme

Генеративные компоненты для Building Designer Help

Ознакомительные сведения о компонентах генерации

Справка по OpenBuildings Designer

Ознакомительные сведения о конструкторе OpenBuildings

Руководство по настройке OpenBuildings Designer

OpenBuildings Designer SDK Readme

Справка по генеративным компонентам OpenBuildings

Ознакомительные сведения по генеративным компонентам OpenBuildings

Справка OpenBuildings Speedikon

Ознакомительные сведения OpenBuildings Speedikon

OpenBuildings StationDesigner Help

OpenBuildings StationDesigner Readme

Гражданское проектирование

Дренаж и коммунальные услуги

Справка по OpenRail ConceptStation

Ознакомительные сведения по OpenRail ConceptStation

Справка по OpenRail Designer

Ознакомительные сведения по OpenRail Designer

Справка по конструктору надземных линий OpenRail

Справка OpenRoads ConceptStation

Ознакомительные сведения по OpenRoads ConceptStation

Справка по OpenRoads Designer

Ознакомительные сведения по OpenRoads Designer

Справка по OpenSite Designer

OpenSite Designer ReadMe

Инфраструктура связи

Справка по Bentley Coax

Справка по PowerView по Bentley Communications

Ознакомительные сведения о Bentley Communications PowerView

Справка по Bentley Copper

Справка по Bentley Fiber

Bentley Inside Plant Help

Справка по OpenComms Designer

Ознакомительные сведения о конструкторе OpenComms

Справка OpenComms PowerView

Ознакомительные сведения OpenComms PowerView

Справка инженера OpenComms Workprint

OpenComms Workprint Engineer Readme

Строительство

ConstructSim Справка для руководителей

ConstructSim Исполнительный ReadMe

ConstructSim Справка издателя i-model

Справка по планировщику ConstructSim

ConstructSim Planner ReadMe

Справка стандартного шаблона ConstructSim

ConstructSim Work Package Server Client Руководство по установке

Справка по серверу рабочих пакетов ConstructSim

Руководство по установке сервера рабочих пакетов ConstructSim

Справка управления SYNCHRO

SYNCHRO Pro Readme

Энергетическая инфраструктура

Справка конструктора Bentley OpenUtilities

Ознакомительные сведения о Bentley OpenUtilities Designer

Справка по подстанции Bentley

Ознакомительные сведения о подстанции Bentley

Справка подстанции OpenUtilities

Ознакомительные сведения о подстанции OpenUtilities

Promis.e Справка

Promis.e Readme

Руководство по установке Promis.e — управляемая конфигурация ProjectWise

Руководство по настройке подстанции

— управляемая конфигурация ProjectWise

Геотехнический анализ

PLAXIS LE Readme

Ознакомительные сведения о PLAXIS 2D

Ознакомительные сведения о программе просмотра вывода 2D PLAXIS

Ознакомительные сведения о PLAXIS 3D

Ознакомительные сведения о программе просмотра 3D-вывода PLAXIS

PLAXIS Monopile Designer Readme

Управление геотехнической информацией

Справка администратора gINT

Справка gINT Civil Tools Pro

Справка gINT Civil Tools Pro Plus

Справка коллекционера gINT

Справка по OpenGround Cloud

Гидравлика и гидрология

Справка по Bentley CivilStorm

Справка Bentley HAMMER

Справка по Bentley SewerCAD

Справка Bentley SewerGEMS

Справка Bentley StormCAD

Справка Bentley WaterCAD

Справка Bentley WaterGEMS

Управление активами линейной инфраструктуры

Справка по услугам AssetWise ALIM Linear Referencing Services

Руководство администратора мобильной связи TMA

Справка TMA Mobile

Картография и геодезия

Справка карты OpenCities

Ознакомительные сведения о карте OpenCities

OpenCities Map Ultimate для Финляндии Справка

Справка по карте Bentley

Справка по мобильной публикации Bentley Map

Ознакомительные сведения о карте Bentley

Проектирование шахты

Помощь по транспортировке материалов MineCycle

Ознакомительные сведения по транспортировке материалов MineCycle

Моделирование мобильности и аналитика

LEGION CAD Prep Help

Справка по построителю моделей LEGION

Справка по API симулятора LEGION

Ознакомительные сведения об API симулятора LEGION

Справка по симулятору LEGION

Моделирование и визуализация

Bentley Посмотреть справку

Ознакомительные сведения о Bentley View

Анализ морских конструкций

SACS Close the Collaboration Gap (электронная книга)

Ознакомительные сведения о SACS

Анализ напряжений в трубах и сосудов

AutoPIPE Accelerated Pipe Design (электронная книга)

Советы новым пользователям AutoPIPE

Краткое руководство по AutoPIPE

AutoPIPE & STAAD.Pro

Завод Проектирование

Ознакомительные сведения об экспортере завода Bentley

Bentley Raceway and Cable Management Help

Bentley Raceway and Cable Management Readme

Bentley Raceway and Cable Management — Руководство по настройке управляемой конфигурации ProjectWise

Справка по OpenPlant Isometrics Manager

Ознакомительные сведения об OpenPlant Isometrics Manager

Справка OpenPlant Modeler

Ознакомительные сведения для OpenPlant Modeler

Справка по OpenPlant Orthographics Manager

Ознакомительные сведения об OpenPlant Orthographics Manager

Справка OpenPlant PID

Ознакомительные сведения о PID OpenPlant

Справка администратора проекта OpenPlant

Ознакомительные сведения для администратора проекта OpenPlant

Техническая поддержка OpenPlant Support

Ознакомительные сведения о технической поддержке OpenPlant

Справка по PlantWise

Ознакомительные сведения о PlantWise

Выполнение проекта

Справка рабочего стола Bentley Navigator

Моделирование реальности

Справка консоли облачной обработки ContextCapture

Справка редактора ContextCapture

Файл ознакомительных сведений для редактора ContextCapture

Мобильная справка ContextCapture

Руководство пользователя ContextCapture

Справка Декарта

Декарт Readme

Структурный анализ

Справка по концепции RAM

Справка по структурной системе RAM

STAAD Закройте пробел в сотрудничестве (электронная книга)

STAAD.Pro Help

Ознакомительные сведения о STAAD.Pro

Программа физического моделирования STAAD.Pro

Расширенная справка по STAAD Foundation

Дополнительные сведения о STAAD Foundation

Детализация конструкций

Справка ProStructures

Ознакомительные сведения о ProStructures

ProStructures CONNECT Edition Руководство по внедрению конфигурации

ProStructures CONNECT Edition Руководство по установке — Управляемая конфигурация ProjectWise

Обзор проектирования, строительства и эксплуатации межгосударственных нефтепроводов.(Технический отчет)

Фаррис, Т. С., и Колпа, Р. Л. Обзор проектирования, строительства и эксплуатации межгосударственных трубопроводов для перекачки нефти. . США: Н. П., 2008. Интернет. DOI: 10,2172 /7.

Фаррис, Т. С., и Колпа, Р. Л. Обзор проектирования, строительства и эксплуатации межгосударственных трубопроводов для перекачки нефти.. Соединенные Штаты. https://doi.org/10.2172/7

Фаррис, Т. К., и Колпа, Р. Л. Чт. «Обзор проектирования, строительства и эксплуатации межгосударственных нефтепроводов.». Соединенные Штаты. https://doi.org/10.2172/7. https://www.osti.gov/servlets/purl/7.

@article {osti_7,
title = {Обзор проектирования, строительства и эксплуатации межгосударственных нефтепроводов.},
author = {Фаррис, Т. К. и Колпа, Р. Л.},
abstractNote = {Промышленность трубопроводов для перекачки жидкого топлива в США обширна, разнообразна и жизненно важна для экономики страны. Состоящие из примерно 200 000 миль труб во всех пятидесяти штатах, трубопроводы для жидкой нефти перевозили более 40 миллионов баррелей в день, или 4 триллиона баррелей-миль, сырой нефти и нефтепродуктов в 2001 году. Это составляет около 17% всех грузов, перевозимых в Соединенные Штаты, однако затраты на это составили всего 2% от общего фрахта страны.Примерно 66% внутренних перевозок нефти (на тонно-милю) осуществляется по трубопроводам, при этом морские перевозки составляют 28%, а железнодорожные и автомобильные перевозки составляют остаток. В 2004 году перемещение сырой нефти по внутренним трубопроводам, регулируемым на федеральном уровне, составило 599,6 миллиарда тонно-миль, а перемещение нефтепродуктов - 315,9 миллиарда тонно-миль (AOPL 2006). В качестве иллюстрации низкой стоимости транспортировки по трубопроводу стоимость транспортировки барреля бензина из Хьюстона, штат Техас, в гавань Нью-Йорка составляет всего 3 цента за галлон, что составляет небольшую часть стоимости бензина для потребителей.Трубопроводы могут быть маленькими или большими, до 48 дюймов в диаметре. Почти вся магистральная труба находится под землей, но другие компоненты трубопровода, такие как насосные станции, находятся над землей. Некоторые линии имеют длину всего милю, в то время как другие могут простираться на 1000 миль и более. Некоторые из них очень просты, соединяют один источник с одним пунктом назначения, в то время как другие очень сложны, имея множество источников, пунктов назначения и взаимосвязей. Многие трубопроводы пересекают одну или несколько государственных границ (между штатами), в то время как некоторые расположены в пределах одного штата (внутри штата), а третьи работают на внешнем континентальном шельфе и могут или не могут простираться на одно или несколько государств.Трубопроводы США расположены в прибрежных равнинах, пустынях, арктических тундрах, горах и на глубине более мили под поверхностью воды в Мексиканском заливе (Rabinow 2004; AOPL 2006). Сеть трубопроводов сырой нефти в США обширна. В Соединенных Штатах есть около 55 000 миль магистральных нефтепроводов (обычно от 8 до 24 дюймов в диаметре), которые соединяют региональные рынки. В Соединенных Штатах также имеется от 30 000 до 40 000 миль небольших сборных линий (обычно от 2 до 6 дюймов в диаметре), расположенных в основном в Техасе, Оклахоме, Луизиане и Вайоминге, с небольшими системами в ряде других нефтедобывающих штатов.Эти небольшие трубопроводы собирают нефть из многих скважин, как на суше, так и на море, и соединяются с более крупными магистральными трубопроводами диаметром от 8 до 24 дюймов. По стране протяженность трубопроводов для нефтепродуктов составляет около 95 000 миль. Трубопроводы для нефтепродуктов есть почти в каждом штате США, за исключением некоторых штатов Новой Англии. Эти трубопроводы для очищенного продукта различаются по размеру от относительно небольших, диаметром от 8 до 12 дюймов, до 42 дюймов в диаметре. Обзор конструкции, монтажа и эксплуатации трубопроводов, представленный в следующих разделах, является лишь беглым обзором.Читателям, заинтересованным в более подробном обсуждении, предлагается ознакомиться с бесчисленным количеством доступных технических публикаций, которые предоставляют такие подробности. Двумя основными публикациями, на которых основаны следующие обсуждения, являются: «Основы нефтегазовых трубопроводов» (Kennedy, 1993) и «Практическое руководство по трубопроводным правилам» (McAllister, 2002). Оба рекомендуются для дополнительного чтения для тех, кому требуются дополнительные сведения. Веб-сайты, поддерживаемые различными операторами трубопроводов, также могут предоставить много полезной информации, а также ссылки на другие источники информации.В частности, рекомендуется использовать веб-сайт Управления энергетической информации (EIA) Министерства энергетики США (http://www.eia.doe.gov). Отличная библиография по стандартам и практике трубопроводов, включая особые соображения для трубопроводов в арктическом климате, была опубликована совместно библиотекарями компании Alyeska Pipeline Service (операторы Трансаляскинской трубопроводной системы [TAPS]) и Геофизического института / Международной Арктики. Исследовательский центр, оба расположены в Фэрбенксе (Barboza and Trebelhorn, 2001), доступны в электронном виде по адресу http: // www.gi.alaska.edu/services/library/pipeline.html коды. Ассоциация нефтепроводов (AOPL) и Американский институт нефти (API) совместно предоставляют обзор, охватывающий жизненный цикл проектирования, строительства, эксплуатации, технического обслуживания, экономического регулирования и отключения трубопроводов для жидкости (AOPL / API 2007).} ,
doi = {10.2172 /7},
url = {https://www.osti.gov/biblio/7}, journal = {},
number =,
объем =,
place = {United States},
год = {2008},
месяц = ​​{1}
}

КАК спроектировать насосную систему

предыдущее

Что такое трение в насосной системе (продолж.)

Другая причина трения — это все фитинги (колена, тройники, y и т. Д.), Необходимые для жидкость из точки A в B. Каждая из них оказывает определенное влияние на линии тока жидкости. Например, в случае колена частицы жидкости, которые находятся ближе всего к плотному внутренний радиус колена отрывается от поверхности трубы, образуя небольшие вихри, которые потребляют энергию. Эта потеря энергии мала для одного локтя, но если у вас несколько локтей и другие приспособления общая сумма может стать значительной.Вообще говоря, они редко представляют более 30% от общего трения из-за общей длины трубы.

Рисунок 9


Энергия и напор в насосных системах

Энергия и напор — два термина, которые часто используются в насосных системах. Мы используем энергию для описания движения жидкостей в насосных системах, потому что это проще, чем любой другой метод. В насосных системах существует четыре формы энергии: давление, высота, трение и скорость.

Давление создается на дне резервуара, потому что жидкость полностью заполняет резервуар, и ее вес создает силу, которая распределяется по поверхности, являющейся давлением. Этот тип давления называется статическим давлением. Энергия давления — это энергия, которая накапливается, когда частицы жидкости или газа перемещаются немного ближе друг к другу и в результате они выталкиваются наружу в окружающей среде. Хорошим примером является огнетушитель, в котором была проделана работа по заливке жидкости в контейнер, а затем по нагнетанию в него давления.После закрытия контейнера энергия давления становится доступной для дальнейшего использования.

Энергия подъема — это энергия, доступная жидкости, когда она находится на определенной высоте. Если вы позволите ему разрядиться, он сможет управлять чем-то полезным, например, турбиной, производящей электричество.

Энергия трения — это энергия, которая теряется в окружающую среду из-за движения жидкости по трубам и фитингам в системе.

Энергия скорости — это энергия движущихся объектов.Когда кувшин бросает бейсбольный мяч он дает ему энергию скорости, также называемую кинетической энергией. Когда вода выходит из садового шланга, у нее есть энергия скорости.

Рисунок 9a

На рисунке выше мы видим резервуар, полный воды, трубу, полную воды, и велосипедиста на вершине холма. Резервуар создает давление внизу, как и трубка. У велосипедиста есть энергия подъема, которую он будет использовать при движении.

Когда мы открываем клапан на дне резервуара, жидкость покидает резервуар с определенной скоростью, в этом случае энергия давления преобразуется в энергию скорости.То же самое и с трубкой. В случае велосипедиста энергия подъема постепенно преобразуется в энергию скорости.

Три формы энергии: высота, давление и скорость взаимодействуют друг с другом в жидкостях. Для твердых объектов нет энергии давления, потому что они не распространяются наружу, как жидкости, заполняющие все доступное пространство, и, следовательно, они не подвержены таким же изменениям давления.

Энергия, которую должен подавать насос, — это энергия трения плюс энергия подъема.

ЭНЕРГИЯ НАСОСА = ЭНЕРГИЯ ТРЕНИЯ + ЭНЕРГИЯ ПОДЪЕМА

Рисунок 9b

Вы, наверное, думаете, где же во всем этом энергия скорости. Ну если жидкость пойдет из системы на высокой скорости, то мы должны были бы рассмотреть это, но это не типичный ситуация, и мы можем пренебречь этим для систем, обсуждаемых в этой статье.

Последнее слово по этой теме, на самом деле нам нужно учитывать разницу в энергии скорости.На рисунке 9c скорости в точках 1 и 2 являются результатом положения частицы жидкости в точках 1 и 2 и действие насоса. Разница между этими две энергии скорости — это дефицит энергии, который насос должен обеспечить, но, как вы можете видеть скорости этих двух точек будут довольно малы.

А как насчет головы? На самом деле голова — это способ упростить использование энергии. Чтобы использовать энергию, нам нужно знать вес перемещаемого объекта.

Энергия возвышения E.E. — это вес объекта W, умноженный на расстояние d:

EE = Ш x Г

Энергия трения FE — это сила трения F, умноженная на расстояние, на которое перемещается жидкость, или длину трубы l:

FE = F x l

Голова определяется как энергия, деленная на вес, или количество энергии, использованное для смещения объекта, деленное на его вес. Для энергии подъема высота подъема EH составляет:

.

EH = Ш x г / Ш = г

Для энергии трения головка трения FH представляет собой энергию трения, деленную на вес вытесненной жидкости:

FH = FE / W = F x l / W (см. Рисунок 9b)

Сила трения F выражается в фунтах, а вес W также в фунтах, так что единицей измерения напора трения являются футы.Это количество энергии, которое насос должен обеспечить для преодоления трения.

Я знаю, вы думаете, что это не имеет смысла, как ноги могут представлять энергию?

Если я прикрепить трубку к нагнетательной стороне насоса, жидкость будет подниматься в трубке на высоту, которая точно уравновешивает давление на выходе насоса. Часть высоты жидкости в трубке связана с требуемой высотой подъема (подъемный напор), а другая — с фрикционной головкой, и, как вы можете видеть, оба значения выражены в футах, и именно так вы можете их измерить.

Рисунок 9c

Статическая головка

Словарь Вебстера определяет голову: «водоем, находящийся в резерве на высоте».

Выражается в футах в британской системе мер и в метрах в метрической системе. Из-за своей высоты и веса жидкость создает давление в нижней точке. Выше резервуар, тем выше давление.

Величина давления на дне резервуара не зависит от его формы, для одного и того же уровня жидкости давление на дне будет одинаковым.Это важно, поскольку в сложных системах трубопроводов всегда можно узнать давление внизу, если мы знаем высоту. Чтобы узнать, как рассчитать давление по высоте, перейдите в конец статьи.

Когда насос используется для вытеснения жидкости на более высокий уровень, он обычно располагается в нижней точке или близко к ней. Напор резервуара, который называется статическим напором, создает давление на насос, которое необходимо преодолеть после запуска насоса.

Чтобы различать энергию давления, создаваемую напорным баком и всасывающим баком, напор на стороне нагнетания называется статическим напором нагнетания, а на стороне всасывания — статическим напором всасывания.

Обычно жидкость вытесняется из всасывающего бака в разгрузочный бак. Жидкость всасывающего бака обеспечивает энергию давления для всасывания насоса, что помогает насосу. Мы хотим знать, сколько энергии давления должен подавать сам насос, поэтому мы вычитаем энергию давления, создаваемую всасывающей головкой.Статический напор в этом случае представляет собой разницу в высоте поверхности жидкости разгрузочного резервуара за вычетом поверхности жидкости всасывающего резервуара. Статический напор иногда называют полным статическим напором, чтобы указать, что энергия давления, доступная с обеих сторон насоса, была учтена.

Поскольку существует разница в высоте между всасывающим и нагнетательным фланцами или соединениями насоса по соглашению было согласовано, что статический напор будет измеряться относительно возвышение всасывающего фланца.

Если конец выпускной трубы открыт в атмосферу, статический напор измеряется относительно конца трубы.

Иногда конец нагнетательной трубы погружается в воду, тогда статический напор будет представлять собой разницу высот между поверхностью жидкости нагнетательного бака и поверхностью жидкости всасывающего бака. Поскольку текучая среда в системе является непрерывной средой, и все частицы текучей среды связаны давлением, частицы текучей среды, которые расположены на поверхности разгрузочного резервуара, будут способствовать давлению, создаваемому на выходе насоса.Следовательно, высота нагнетательной поверхности — это высота, которую необходимо учитывать при статическом напоре. Избегайте ошибку, используя конец трубы разряда в качестве высоты для расчета статического напора, если конец трубы погружен в воду.

Примечание: если конец выпускного трубопровода погружен в воду, а затем обратный клапан на сброс насоса требуется, чтобы избежать обратного потока, когда насос остановлен.

Статическая головка может быть изменена путем увеличения поверхности выпускного резервуара (предполагается, что конец трубы погружен в воду) или всасывающий резервуар или оба.Все эти изменения повлияют на скорость потока.

Для правильного определения статического напора следуйте за частицами жидкости от начала до конца, начало почти всегда находится на поверхности жидкости всасывающего резервуара, это называется возвышением на входе. Конец будет происходить там, где вы столкнетесь со средой с фиксированным давлением, такой как открытая атмосфера, эта точка является концом отметки разгрузки или возвышением выхода. Разница между двумя высотами — статический напор. Статический напор может быть отрицательным, поскольку высота выхода может быть ниже, чем высота входа.

Расход зависит от перепада высот или статического напора

Для идентичных систем расход будет изменяться в зависимости от статического напора. Если высота конца трубы велика, расход будет низким (см. Рисунок 10). Сравните это с велосипедистом на холме с небольшим уклоном вверх, его скорость будет умеренной и соответствовать количеству энергии, которое он может предоставить для преодоления трения колес о дороге и изменения высоты.

Рисунок 10

Посмотрите это видео, чтобы увидеть эффект статического напора и трения.


Если поверхность жидкости всасывающего бака находится на той же высоте, что и нагнетательный конец трубы, статический напор будет равен нулю, а скорость потока будет ограничена трением в системе. Это эквивалентно велосипедисту на ровной дороге, его скорость зависит от силы трения между колесами и дорогой и сопротивления воздуха (см. Рисунок 11).

Рисунок 11


На Рис. 12 конец нагнетательной трубы поднимается вертикально до тех пор, пока поток не прекратится, насос не может поднять жидкость выше этой точки, и давление нагнетания достигнет максимума.Точно так же велосипедист прилагает максимальное усилие к педалям, никуда не попадая.

Рисунок 12


Если конец выпускной трубы ниже поверхности жидкости всасывающего резервуара, статический напор будет отрицательным, а скорость потока — высокой (см. Рисунок 13). Если отрицательный статический напор велик, то возможно, что насос не требуется, поскольку энергия, обеспечиваемая этой разницей в высоте, может быть достаточной для перемещения жидкости через систему без использования насоса, как в случае сифона ( см. глоссарий насосных систем).По аналогии, когда велосипедист спускается с холма, он теряет накопленную энергию подъема, которая постепенно преобразуется в энергию скорости. Чем ниже он на склоне, тем быстрее идет.

Рисунок 13

Насосы чаще всего оцениваются по напору и расходу. На рисунке 12, конец выпускного трубопровода поднимают на высоту, при которой поток останавливается, это напор насоса при нулевом расходе. Мы измеряем эту разницу в высоте в футах (см. Рис. 13а).Напор варьируется в зависимости от расхода, но в этом случае, поскольку поток отсутствует и, следовательно, отсутствует трение, напор насоса составляет МАКСИМАЛЬНУЮ ВЫСОТУ, НА КОТОРОЙ МОЖНО ПОДНИМАТЬ ЖИДКОСТЬ ОТНОСИТЕЛЬНО ПОВЕРХНОСТИ ВСАСЫВАЮЩЕГО БАКА. Поскольку потока нет, напор (также называемый общим напором), создаваемый насосом, равен статическому напору.

Рисунок 13a

В этой ситуации насос будет обеспечивать максимальное давление. Если конец трубы опускается, как показано на рисунке 10, расход насоса увеличится, а напор (также известный как общий напор) уменьшится до значения, соответствующего расходу.Почему? Начнем с точки нулевого потока, когда конец трубы находится на максимальной высоте, конец трубы опускается, и начинается поток. Если есть поток, должно быть трение, энергия трения вычитается (потому что она теряется) из максимального общего напора, и общий напор уменьшается. В то же время статический напор уменьшается, что еще больше снижает общий напор.

При покупке насоса вы не указываете максимальный общий напор, который может обеспечить насос, поскольку это происходит при нулевом расходе.Вместо этого вы указываете общий напор, который возникает при требуемом расходе. Этот напор будет зависеть от максимальной высоты, которую вам нужно достичь по отношению к поверхности жидкости всасывающего резервуара, и потерь на трение в вашей системе.

Например, если ваш насос питает ванну на 2-м этаже, вам понадобится напор, достаточный для достижения этого уровня, это будет ваш статический напор, плюс дополнительная сумма для преодоления потерь на трение в трубах и фитингах. Если предположить, что вы хотите наполнить ванну как можно быстрее, то краны на ванне будут полностью открыты и будут обеспечивать очень небольшое сопротивление или потери на трение.Если вы хотите поставить для этой ванны душевую лейку, вам понадобится насос с большей головкой для той же скорости потока, потому что душевая лейка выше и обеспечивает большее сопротивление, чем смесители для ванны.

К счастью, существует множество размеров и моделей центробежных насосов, и вы не можете рассчитывать на покупку насоса, который точно соответствует требуемому напору при желаемом расходе. Вам, вероятно, придется приобрести насос, который обеспечивает немного больший напор и расход, чем вам требуется, и вы будете регулировать расход с помощью соответствующих клапанов.

Примечание. Вы можете увеличить напор насоса, увеличив его скорость или диаметр рабочего колеса, или и то, и другое. На практике домовладельцы не могут вносить эти изменения, и для получения более высокого общего напора необходимо приобретать новый насос.

Расход зависит от трения

Для идентичных систем, скорость потока будет меняться в зависимости от размера и диаметра выпускной трубы. Система с выпускной трубой большого размера будет иметь высокий расход.Вот что происходит, когда вы кладете большую трубу на опорожняемый резервуар, он очень быстро сливается.

Рисунок 14


Чем меньше размер трубы, тем меньше расход. Как насос подстраивается под диаметр трубы, ведь он не знает, какого размера труба будет установлена? Устанавливаемый вами насос рассчитан на создание определенного среднего расхода для систем с соответствующим размером труб. Размер рабочего колеса и его скорость предрасполагают насос к подаче жидкости с определенным расходом.Если вы попытаетесь протолкнуть тот же поток через небольшую трубу, давление на выходе увеличится, а поток уменьшится. Точно так же, если вы попытаетесь опорожнить резервуар с помощью небольшой трубки, для его слива потребуется много времени (см. Рисунок 15).

Позже в этом руководстве будет представлена ​​диаграмма с указанием размеров труб для различных расходов. Или вы можете сразу перейти к нему и вернуться позже.

Рисунок 15


Если труба короткая, трение будет низким, а расход большим (см. Рисунок 16).

Рисунок 16

, а когда напорная труба длинная, трение будет большим, а расход — низким (см. Рисунок 17).

Рисунок 17



Как центробежный насос создает давление

Частицы жидкости попадают в насос через всасывающий фланец или соединение. Затем они поворачиваются на 90 градусов в рабочее колесо и заполните пространство между каждой лопастью рабочего колеса.

Рисунок 19

Более подробный вид более реалистичного поперечного сечения насоса с закрытым рабочим колесом можно увидеть на Рисунке 19a

.

Рисунок 19a

Центробежный насос — это устройство, основное назначение которого — создание давления путем ускорения частицы жидкости до высокой скорости, обеспечивая их энергией скорости. Что такое энергия скорости? Это способ выразить, как скорость объектов может влиять на другие объекты, например на вас.С вами когда-нибудь брались в футбольном матче? Скорость, с которой приходит другой игрок. вы определяете, насколько сильно вас ударили. Масса игрока — тоже немаловажный фактор. В сочетание массы и скорости дает скорость (кинетическую) энергию. Другой пример — ловля тяжелого бейсбольное поле, ой, небольшому быстро движущемуся бейсбольному мячу может быть выделена определенная скорость. Жидкость частицы, которые движутся с высокой скоростью, обладают энергией скорости, просто положите руку на открытый конец садового шланга.

Частицы жидкости в насосе выбрасывается из кончиков лопастей рабочего колеса на высокой скорости, то они замедляются, поскольку они становятся ближе к патрубку, теряя часть своей энергии скорости. Это уменьшение энергии скорости увеличивает энергию давления. В отличие от трения, которое тратит энергию впустую, уменьшение энергии скорости служит увеличению энергии давления, что является принципом сохранения энергии в действии. То же самое происходит с велосипедистом, который стартует на вершине холма, его скорость постепенно увеличивается по мере того, как он теряет высоту.Энергия подъема велосипедиста была преобразована в энергию скорости, в случае насоса энергия скорости преобразована в энергию давления.

Проведите этот эксперимент: найдите пластиковый стаканчик или другой контейнер, в дне которого можно проделать маленькую дырочку. Наполните его водой и прикрепите к нему веревочку, и теперь, когда вы угадали, начинайте крутить.

Рисунок 20


Чем быстрее вы вращаете, тем больше воды выходит из небольшого отверстия, вода сжимается внутри чашки за счет центробежной силы аналогично центробежному насосу.В случае насоса вращательное движение крыльчатки выбрасывает частицы жидкости с высокой скоростью в объем между стенкой корпуса и концами крыльчатки. Перед тем, как покинуть насос, частицы жидкости замедляются до скорости на входе в напорную трубу (см. Рисунки 18 и 19), которая будет одинаковой по всей системе, если диаметр трубы не изменится.

Как изменяется скорость потока, когда конец выпускного трубопровода высота изменяется или когда есть увеличение или уменьшение трения трубы? Эти изменения приводят к увеличению давления на выходе насоса при уменьшении потока, звуки в обратном направлении — нет.Что ж, это не так, и вы поймете почему. Как насос приспосабливается к этому изменению давления? Или, другими словами, если давление изменяется из-за внешних факторов, как насос реагирует на это изменение.

Давление создается частотой вращения лопаток рабочего колеса. Скорость постоянная. Насос будет создавать определенное давление нагнетания, соответствующее конкретным условиям системы (например, вязкости жидкости, размеру трубы, перепаду высот и т. Д.). Если изменение чего-либо в системе приводит к уменьшению потока (например, закрытие нагнетательного клапана), давление на выходе насоса возрастет, поскольку не происходит соответствующего снижения скорости вращения рабочего колеса .Насос производит избыточную энергию скорости, потому что он работает с постоянной скоростью, избыточная энергия скорости преобразуется в энергию давления, и давление повышается.

Все центробежные насосы имеют характеристическую кривую, которая похожа на кривую, показанную на рисунке 21 (при условии, что уровень во всасывающем баке остается постоянным), это показывает, как давление нагнетания изменяется в зависимости от скорости потока через насос.

Рисунок 21


Таким образом, при 200 галлонах в минуту этот насос создает давление нагнетания 20 фунтов на кв. Дюйм, а при падении потока давление достигает максимального значения 40 фунтов на квадратный дюйм.

Примечание: это относится к центробежным насосам, у многих домовладельцев есть поршневые насосы, часто поршневые. Эти насосы производят постоянный поток независимо от того, какие изменения вносятся в систему.

см. Влияние статического напора на скорость потока в действии в этом видео

продолжить

Авторское право 2019, PumpFundamentals.com

Важность подтверждения дизайна

Возможно, вы слышали термин «сточные воды текут вниз по склону.В этой статье мы будем называть это гравитационным потоком. Во многих случаях городские канализационные системы должны сначала перекачивать жидкость в гору. Это создает множество проблем, связанных с минимальными скоростями потока и проблемами скачков давления. В этой статье описываются основные проблемы типовой насосной станции канализации, которые могут возникнуть после запуска.

Featured Image: Подрядчик обнажил трубопровод и обнаружил, что труба вышла из строя.
Вверху: Расследование на предмет того, был ли разрушен новый 6-дюймовый воздушный / вакуумный клапан для сточных вод.
ОБЗОР ПРОЕКТА
Погружные насосы для перекачки твердых тел с наклонным сухим приямком, используемые для этого конкретного применения, были рассчитаны на перемещение 1750 галлонов в минуту на высоте 100 футов в 20-дюймовой силовой магистрали длиной 10 000 футов. Высота насосной станции составляла 315 футов, а сброс — 369 футов. Система была разработана с четырьмя 2-дюймовыми воздушно-вакуумными выпускными клапанами. Силовая магистраль прошла испытания под давлением и соответствовала указанным требованиям.
Вскоре после ввода в эксплуатацию жители, проживающие недалеко от места разгрузки силовой магистрали, начали жаловаться на чрезвычайно резкий запах.Позже мы обнаружили, что запах усиливался, потому что сточные воды подвергались полному разрежению, и газы выделялись при принудительном сбросе магистрали в самотечный канализационный трубопровод.
После сильного ливня была обнаружена большая утечка в силовой магистрали. К несчастью для одного из жителей, их бассейн был заполнен рекой сточных вод. Подрядчик обнажил трубопровод и обнаружил, что труба вышла из строя.

Optifloat устанавливается в мокрый колодец.
РЕМОНТ
Ремонт силовой магистрали.Было сделано предположение, что у них проблемы с гидроударом. Муниципалитет установил предохранительный клапан на насосной станции для сброса высокого давления, которое могло возникнуть при максимальном расходе во время дождя. Установлен 4-дюймовый предохранительный клапан сточных вод, и насосная станция снова введена в эксплуатацию.
Уставка на предохранительном клапане была установлена ​​на 30 фунтов на кв. Дюйм. Это было определено, глядя на установившееся давление нагнетания насоса, которое составляло 20 фунтов на квадратный дюйм. Насос был запущен и остановлен, и оператор мог слышать поток через предохранительный клапан.Муниципалитет и подрядчик пришли к выводу, что проблема высокого давления решена.
На следующий день мэру позвонили те же жители, которые жаловались на резкий запах. Мэр, директор общественных работ и два оператора встретились с жителями у крышки люка, где силовая магистраль входит в самотечный коллектор.
Они открыли крышку основного прохода, чтобы посмотреть, не попало ли мертвое животное в систему трубопроводов. Когда они смотрели в люк, волна воды хлынула вверх, заливая четырех человек.Поток резко остановился. Через несколько секунд из люка снова хлынула вода, и крышка люка была поставлена ​​на место.

Напорный фланец насоса поврежден, болты между нагнетательным патрубком 90 и обратным клапаном срезаны.
ПЕРВОНАЧАЛЬНАЯ ОЦЕНКА
На следующий день директор общественных работ позвонил производителю воздушного / вакуумного клапана и рассказал о том, что произошло. Производитель установил данные в свое программное обеспечение для определения размеров и определил, что на этой силовой магистрали диаметром 20 дюймов (длиной 10 000 футов) в верхних точках следует устанавливать 6-дюймовые воздушно-вакуумные клапаны, а не 2-дюймовые.
В 20-дюймовой силовой магистрали была установлена ​​6-дюймовая втулка, и был установлен первый 6-дюймовый воздушный / вакуумный клапан. Насосная станция снова введена в эксплуатацию. Муниципалитет и подрядчик пришли к выводу, что проблема нагнетания сточных вод решена.
Несколько дней спустя те же жители позвонили и сообщили, что сточные воды стекают в их двор. Операторы проехали по силовой магистрали, пока не подошли к новому 6-дюймовому воздушно-вакуумному клапану для сточных вод.
6-дюймовый воздушный / вакуумный клапан был разрушен.Нижний поплавок рухнул, как будто его переехал паровой каток. 6-дюймовый воздушный / вакуумный клапан был изолирован, а другой 6-дюймовый воздушный / вакуумный клапан был установлен, но не введен в эксплуатацию.

Без устройств защиты от перенапряжения программное обеспечение в анимации показывает силовую магистраль в условиях разрушающего вакуума.

С помощью компьютерного анализа помпажа Blacoh Surge Control, правильной установки устройств контроля помпажа и оборудования для мониторинга переходных процессов, которое записывает 100 раз в секунду для документирования операций и проектных характеристик всех материалов, эти переходные проблемы могут быть быстро решены.Программное обеспечение KY Pipe Surge Software позволяет анализировать каждую часть вашей насосной и трубопроводной системы.

Моделирование возникло, когда муниципалитет добавил 4-дюймовый предохранительный клапан. Клапан открылся, пропустив лишь небольшой поток. Сделан вывод об отсутствии проблемы высокого давления. Отрицательное давление вызывало повреждение системы трубопроводов.

Компьютерная модель, показывающая поток из 4-дюймового предохранительного клапана.

Полевая оценка канализационной магистрали определила необходимость установки системы контроля переходных процессов на воздушно-вакуумном выпускном клапане.
ОБНАРУЖЕНА УТЕЧКА В ОБРАТНОМ КЛАПАНЕ
На следующий день, когда оператор вернулся на насосную станцию, он заметил, что обратные клапаны на насосах протекают через подшипник. Оператор мог слышать реверс потока через клапан. Обратный клапан имел внешний уровень и вес.
Оператор силой открыл рычаг обратного клапана, чтобы удалить мусор, который мог застрять в обратном клапане. Затем он включил насос «вручную» селекторным переключателем на панели управления насосом, запустил насос на пару минут, затем выключил насос.Обратный клапан захлопнулся, и трубопровод внутри насосной станции задрожал.
Оператор подумал, что, если он добавит больше веса к руке, это может помочь заставить ее закрыться быстрее. Его старые штанги красиво крепились к рычагу обратного клапана. Он включил и выключил насос, обратный клапан захлопнулся, и трубопровод внутри насосной станции задрожал. На следующий день оператор снял весь груз и добавил пружину к рычагу уровня.
На следующий день, находясь на насосной станции, оператор заметил, что насосы работали и работали некоторое время.Обычно станция работала около шести минут, а затем отключалась. Он проверил поплавковые выключатели в мокром колодце и обнаружил, что ртутный взрывозащищенный поплавковый выключатель вышел из строя из-за усталости провода. Наконец что-то сломалось, он знал, что может исправить!

Введен в эксплуатацию 6-дюймовый клапан для замены воздуха / вакуума для сточных вод. Посредством данных мониторинга переходных процессов и компьютерного анализа помпажа было определено, что клапан был слишком большого размера, реагировал, замедляясь на волну отрицательного давления, и сбрасывал сточные воды в окружающую среду.

Установка системы мониторинга переходных процессов Blacoh TP3 позволит оценивать работу насоса, время закрытия обратного клапана, работу расширительного бака и функциональность всех устройств контроля помпажа. Если воздушные / вакуумные клапаны не работают, система контроля переходных процессов подаст сигнал тревоги. Во время события переходного давления система контроля переходного процесса регистрирует давления со скоростью 100 раз в секунду.
УСТАНОВКА РЕЛЕ OPTIFLOAT
Он установил новые реле Optifloat внутри панели управления насосом.Вместо проводов, идущих к поплавку, Optifloat использует оптоволоконный кабель, который передает луч света от светодиода в удаленном приемопередатчике на поплавок, где луч переключается в зависимости от наклона поплавка.
Трансивер определяет наличие или отсутствие света. Он активирует реле в трансивере, которое включает и выключает насосы. Поскольку поплавок не имеет электрических частей или проводов, он ни при каких условиях не может создавать дуги или искры и не может вызывать взрыв, что делает его по своей сути безопасным.Операторы снова вводят насосную станцию ​​в эксплуатацию.
Насос выключился, обратный клапан захлопнулся, внутри насосной станции зашумел трубопровод, и сточные воды начали разбрызгиваться. Сломаны болты между помпой и выпускным патрубком на 90. На трубопроводах срезаны болты с мегапикселями, и насосная станция была остановлена.

В заключение компьютерной модели перенапряжения был установлен резервуар для перенапряжения сточных вод Blacoh емкостью 1600 галлонов, который поддерживал давление в силовой магистрали на уровне атмосферы во время отключения насоса.

Емкость для перенапряжения сточных вод с мочевым пузырем Blacoh емкостью 1600 галлонов предназначена для передачи энергии на изменение скорости, вызванное отключением насоса.
ЗАКЛЮЧЕНИЕ
Компьютерный анализ скачков напряжения без должным образом встроенных в систему устройств защиты от скачков напряжения может иметь разрушительные последствия для вашей системы. В Blacoh Surge Control мы не допускаем, чтобы давление в силовой магистрали из ковкого чугуна опускалось ниже -6 фунтов на квадратный дюйм, а также не допускаем, чтобы трубопровод из ПВХ упал ниже -2 фунтов на квадратный дюйм. Если давление падает ниже этого давления, мы проектируем систему с расширительным баком для сточных вод, чтобы дать энергию для минимизации условий вакуума.
Чтобы избежать проблем с запахом и коррозии трубопровода, постарайтесь спроектировать систему так, чтобы волны отрицательного давления не опускались ниже атмосферного.
Предположим, что при проектировании канализационной магистрали воздушные / вакуумные клапаны могут засориться и перестать работать. Разработайте план технического обслуживания для проверки работы воздушных / вакуумных клапанов. Установите клапаны выпуска воздуха / вакуума / давления воздуха, чтобы позволить захваченному воздуху выходить из трубопровода, чтобы максимизировать эффективность насоса.
Если воздушный / вакуумный клапан захлопывается на волне обратного давления, Blacoh Surge Control может смоделировать трехступенчатый воздушный вакуумный клапан с регулируемым временем переключения и вторым размером отверстия.Затем клапан будет отрегулирован на месте и откалиброван с помощью оборудования для мониторинга переходных процессов.
В вертикальном нагнетательном трубопроводе от насоса установите угловой обратный клапан Шустера с углом 90 градусов, чтобы увеличить время закрытия и снизить вероятность того, что мусор может вызвать неисправность обратного клапана. Выполните компьютерную модель помпажа с помощью программного обеспечения KY Pipe Surge. Программное обеспечение поможет в разработке устройств защиты от перенапряжения. В системе, описанной в этой статье, мы установили 2-дюймовые воздушно-вакуумные клапаны.
Полевая оценка магистральной канализационной магистрали определила необходимость установки системы контроля переходных процессов на выпускном воздушно-вакуумном клапане.Это определит время открытия воздушного / вакуумного клапана и обеспечит его правильный размер. Эти полевые данные будут сравниваться с компьютерным анализом помпажа. ◆
Фрэнк Ноулз Смит III возглавляет группу Blacoh Surge Control в качестве исполнительного вице-президента. Смит — уважаемый новатор в области гидродинамики с 28-летним опытом работы в академической сфере, проектировании и применении. Являясь ведущим экспертом в области защиты от помпажа, Смит специализируется на проектировании насосных станций / трубопроводов и компьютерном моделировании, создании компонентов трубопроводов, контрольно-измерительных приборов и электрических панелей управления.Его уникальный опыт и индивидуальные инженерные услуги не имеют аналогов в отрасли. С ним можно связаться по адресу [email protected] или 951.342.3100. Для получения дополнительной информации посетите www.blacoh.com.

____________________________________________
MODERN PUMPING TODAY, сентябрь 2015
Вам понравилась эта статья?
Подпишитесь на БЕСПЛАТНОЕ цифровое издание журнала Modern Pumping Today !

Водяная насосная станция | Город Эванстон


(Изображение / рендеринг водяной насосной станции.Нажмите для увеличения.)

Водонасосная станция на Черч-стрит, 2525,

Зачем городу насосная станция
13 февраля 2017 года город Эванстон принял Постановление 5-O-17 о заключении Соглашения о водоснабжении с деревнями Мортон-Гроув и Найлс. Первоначальный срок соглашения составляет 40 лет с двумя положениями о продлении на 10 лет. Давление, которое производит Городская водопроводная станция, недостаточно, чтобы заставить воду проходить через водопровод на все расстояние до этих деревень.Водонасосная станция необходима для приема воды и ее откачки под более высоким давлением в эти общины. Существующий водопровод большого диаметра, способный обеспечить необходимое количество воды, расположен на пересечении улиц Emerson и McCormick, что делает его хорошим местом для насосной станции. Вода из насосной станции никому из жителей Эванстона не пойдет.

Что будет на насосной станции
В насосной станции будут три насоса с электродвигателем.Обычно будут работать 2 насоса, а третий будет резервным. Насосная станция будет безлюдной. Еженедельно кто-нибудь будет посещать насосную станцию ​​для проведения физического осмотра. Каждые 6 месяцев будет проводиться плановое техническое обслуживание насосов и двигателей. В случае сбоя в электроснабжении есть генератор, который будет работать во время отключения электроэнергии для поддержания потока воды в два населенных пункта. Генератор будет проверяться один час каждый месяц. На выхлопе этого генератора установлен глушитель, а выхлопные газы выходят на западную сторону здания, вдали от домов на МакДэниел.Насосы насосной станции будут дистанционно управляться операторами водозаборной станции Evanston Water Plant. Дополнительную информацию о звуке, создаваемом резервным генератором, см. В техническом меморандуме Stanley Consultants.

Помимо перекачки воды, что еще будет происходить на станции
Насосная станция также будет оборудована возможностью добавления гипохлорита натрия (то есть отбеливателя) в воду, если это необходимо, для поддержания уровня хлора в воде .В настоящее время городские власти поддерживают в среднем 0,44 мг / л свободного хлора в своей системе распределения, и городской персонал уверен, что остаточный хлор, доставляемый в точку подключения Комиссии по водоснабжению Мортон-Гроув-Найлс (MGNWC) перед насосной станцией, будет на уровне соответствующий уровень. Насосная станция была спроектирована с помещением для оборудования подачи химикатов, но первоначально она не будет установлена. Оборудование будет установлено только в том случае, если MGNWC обнаружит, что ему необходимо повысить уровни.Отбеливатель будет храниться только в случае его использования; он не будет храниться как резервный.

В том маловероятном случае, если возникнет необходимость добавить гипохлорит (который будет в два-три раза сильнее, чем бытовой отбеливатель), он будет храниться на месте. Он будет храниться в резервуарах в резервуарах для хранения разливов. Если бы они протекали, отбеливатель остался бы в химической комнате и не достигал бы дверей или сточных вод. Альтернативой является газообразный хлор, но из-за повышенного риска для безопасности он не используется на этом предприятии.

Что такое MGNWC

После утверждения Соглашения о водоснабжении Межправительственным соглашением была учреждена Водная комиссия Мортон-Гроув-Найлс (MGNWC) для целей строительства и эксплуатации общественной системы водоснабжения, состоящей из магистральных водопроводов, насосов, накопителей и других связанных систем водоснабжения. и принимающая инфраструктура между точкой подключения на водопроводной системе Эванстона и существующими водоприемными точками Найлса и Мортон-Гроув.Решение 4-Р-18 принято горсоветом 22 января 2018 года.

MGNWC получила выгодные предложения на строительство предполагаемого подключения и находится в очереди на получение ссуды под низкие проценты от IEPA для строительства своей инфраструктуры. MGNWC надеется начать строительство весной и получить воду к концу 2018 — началу 2019 года. Предлагаемая городскими властями ставка на 2018 год составляет 0,78 доллара за тысячу галлонов.

Кто владеет недвижимостью
Городские власти недавно заключили 50-летний договор аренды с владельцем собственности, муниципальным округом мелиорации воды.MGNWC будет заниматься строительством и обслуживанием насосной станции, но она будет эксплуатироваться городскими властями.

Каковы планы в отношении собственности и кто покрывает расходы
В рамках Плана капитального ремонта Эванстона были выделены средства для сноса существующей структуры, бывшего здания школы на берегу. Эванстон намеревается развивать собственность на берегу с предложенными улучшениями парка. MGNWC заключит контракт и оплатит инженерные услуги и строительные работы по сносу и удалению существующего школьного здания и северной парковки из бывшей прибрежной собственности.MGNWC несет полную ответственность за средства и методы этой работы. Evanston возместит MGNWC разумные расходы, связанные с этой работой.

Южная парковка будет оставаться в своем существующем состоянии до тех пор, пока компания Evanston не построит предлагаемые улучшения парка. MGNWC за свой счет установит электрические и сантехнические соединения и приспособления, соответствующие нормам, для двух общественных туалетов, а также предусмотрит место для потенциального помещения для оборудования, если оно потребуется в рамках проекта благоустройства парка.Дренажные и канализационные отводы в туалетах будут подключены к системе отвода сточных вод IPS, которая будет состоять из насосной станции измельчителя. MGNWC несет полную ответственность за средства и методы этой работы. Evanston возместит MGNWC расходы на покупку и установку сантехники. Эванстон намеревается в ближайшее время построить парк улучшений. Эванстон обеспечит водоснабжение и электроэнергию, необходимые для благоустройства парка.

Когда это было / будет обсуждаться с сообществом
В дополнение к собраниям городского совета / комитета, перечисленным ниже в истории законодательства, олдермен Робин Рю Симмонс обсудила предложения MGNWC на ​​своем 5-м собрании прихода 18 января 2018 г. была внесена в повестку дня, отправленную ее жильцам.

члена сообщества были приглашены присоединиться к сотрудникам Alderman Rue Simmons и Сити для экскурсии по одной из городских водонасосных станций на 2520 Gross Point Road.Экскурсия состоялась в четверг, 8 марта, в 17:30. Жители смогли увидеть и услышать, как работает насосная станция, и задать вопросы.

История законодательства
MGNWC представила разрешение на строительство и освобождение от муниципального использования для строительства новой водонасосной станции площадью 3260 кв. Футов, соединительных труб и общественных туалетов на заседании Комитета по рассмотрению дизайна и проектов (DAPR) 7 февраля 2018 г. . Были представлены предлагаемый план участка, ландшафтный план и фасады зданий.Исключение для муниципального использования и план по минимизации неблагоприятных воздействий получили единодушную положительную рекомендацию. Комитет запросил дополнительную информацию, и 28 февраля 2018 г. вопрос был возвращен для дальнейшего обсуждения. DAPR рекомендовало окончательное одобрение.

12 февраля 2018 года Комитет по администрации и общественным работам и городской совет одобрили Постановление 9-R-18, утверждающее Меморандум о взаимопонимании между городом и MGNWC по строительству и эксплуатации промежуточной дожимной насосной станции, расположенной по адресу 2525 Черч-стрит.Кроме того, 12 февраля 2018 года Комитет по планированию и развитию и городской совет одобрили Постановление 10-R-18, предоставляющее исключение для муниципального использования коммунальных услуг (насосная станция) на 2525 Church Street. Это позволяет построить насосную станцию ​​в районе открытого пространства OS, где коммунальные услуги не являются разрешенным или специальным использованием.

Будет ли здание охраняться?
Насосная станция — это охраняемый объект с камерами и сигнализацией о незаконном проникновении, которая будет передаваться обратно на завод.Общественные объекты будут регулироваться, как это обычно делается для парков в других местах.

Будет ли чрезмерное освещение
Территория вокруг здания будет освещена так же, как любое здание в городском парке. В здании не будет прожекторов или чрезмерного освещения.

Какие исключения предоставляются для этого проекта?
Хотя общественное коммунальное предприятие не является разрешенным для использования в районе зонирования открытого пространства ОС, Постановление о зонировании (6-7-4) гласит, что любая государственная или частная функция, принадлежащая или управляемая Город разрешается использовать в любом районе.Городской совет может утверждать здания и сооружения, которые не соответствуют всем требованиям соответствующего района, если они необходимы для предоставления желаемых городских услуг и если неблагоприятное воздействие на окружающую собственность в результате такого несоблюдения минимизировано. Неблагоприятные воздействия могут быть минимизированы за счет дизайна, архитектурной обработки, экранирования, ландшафтного дизайна и / или размещения на участке. Такой план по снижению негативного воздействия был рассмотрен Комитетом по проектированию и анализу проектов.

Есть ли другие насосные станции в Эванстоне?
В Эванстоне есть аналогичная насосная станция меньшего размера, расположенная рядом с водохранилищем на 2350 Гросс-Пойнт-роуд. Эта насосная станция используется Evanston для увеличения давления в северо-западной части города во время высоких потребностей в воде и для рециркуляции воды, которая хранится в хранилище объемом 7,5 миллионов галлонов. Он не обслуживается людьми и управляется операторами водной станции на заводе.

Блюз насосной станции — Индустрия полей для гольфа

Поле для гольфа Oak Meadows в Аддисоне, штат Иллинойс., находится в водоразделе Солт-Крик в восточной части округа Дюпейдж, в 15 милях к западу от Чикаго. Здесь есть водно-болотные угодья, пруды, прерии, старовозрастные дубово-гикориевые леса и участок Солт-Крик. Солт-Крик — извилистый ручей, протекающий с севера на юг через лесной заповедник. На западной стороне открытая сельская местность с низкой посадкой спускается к ручью, а остатки ручьев усеивают пойму. Восточный берег густо заселен дубами и гикорием и быстро поднимается от берега ручья.

Архитектор поля для гольфа К.Д. Вагстафф построил поле для гольфа в начале 1920-х годов. В то время это был стильный и известный загородный клуб Elmhurst с обширным клубным домом в тюдоровском стиле и традиционной «парковой» планировкой. Он стал частью истории гольфа в 1941 году, когда Бен Хоган, один из величайших игроков, выиграл в этом клубе Chicago Open. Однако после нескольких лет сокращения членства и уменьшения прибыли владельцы были вынуждены продать в 1985 году.

Может показаться, что ухоженное коммерческое поле для гольфа с газоном не подходит для агентства, основанного на охране природы.Но у лесного заповедника округа Дюпейдж есть заявленная миссия — «приобретать и удерживать земли… для образования, развлечения и отдыха своих граждан». Таким образом, более 100 000 игроков в гольф пользуются тремя полями округа каждый год, так же как посетители пользуются его площадками для собак без поводка, тирами для стрельбы из лука, модельными аэродромами и палаточными лагерями. Для многих игроков в гольф поля служат ключевым знакомством с большой системой лесных заповедников.

Но Дубовые луга находится на распутье. В 2009 году пожар уничтожил здание клуба, а коммерческая и жилая застройка выше по течению увеличила объем и интенсивность паводковых вод из Солт-Крик.За последние несколько лет практика обслуживания территории была сведена к «реакции и восстановлению», а эксплуатационные и эксплуатационные нагрузки из-за увеличивающихся наводнений, продолжающегося давления на рынке и проблем с играбельностью вынудили Лесной заповедник рассмотреть возможные улучшения для этого объекта.

«На протяжении десятилетий Oak Meadows действовала как« коммерческое »гольф-предприятие, которое также обеспечивало ценное удержание ливневой воды для жителей района», — говорит Эд Стивенсон, директор гольф-предприятий района Лесного заповедника округа Дюпейдж.«Но способность вести успешный гольф-бизнес сильно страдает каждый раз, когда затопляет собственность, что сейчас случается все чаще».

В результате округ решил создать план, который восстановит Oak Meadows как одну из лучших общественных площадок для гольфа в северном Иллинойсе, при этом значительно улучшив экосистемы в лесном заповеднике площадью 288 акров, изучив возможности улучшения Солт-Крик и расширение преимуществ хранения ливневой воды для окружающего сообщества.

Martin Design тесно сотрудничал с Управлением планирования округа Лесного заповедника, чтобы завершить генеральный план, который соответствовал бы поставленным целям или превзошел их.Осенью 2012 года он представил план на утверждение Совету уполномоченных лесного заповедника.

За этапом генерального плана последовала последующая «фаза проверки концепции», на которой были обоснованы концепции плана, выгоды проекта, затраты на строительство и график работ, изложенные в генеральном плане. После того, как проверка концепции предоставила доказательства генерального плана, детали проекта и планирование функций продолжились в надежде на то, что летом 2015 года начнется строительство.

Последующий анализ начал выявлять проблемы, стоящие перед лесным заповедником.Подобное улучшение заповедника требует участия многочисленных агентств, выдающих разрешения, и заинтересованных сторон. Процесс выдачи разрешений является напряженным, в нем участвуют Инженерный корпус армии США, Департамент природных ресурсов Иллинойса, Агентство по охране окружающей среды Иллинойса, Департамент автомобильных дорог округа Дюпейдж, Департамент охраны окружающей среды округа Дюпейдж, город Вуд-Дейл, деревня Аддисон, почва Кейн Дюпейдж и Район водосбережения и рабочая группа по Солт-Крик на реке Дюпейдж.

На этапах планирования и проектирования было очевидно, что лесной заповедник намеревается провести комплексные и широкомасштабные улучшения объекта.

Концепция Oak Meadows отвергла предположение о том, что улучшение условий для гольфа требует принесения в жертву собственности. Вместо этого план Oak Meadows поощряет собственность расширять и улучшать среду обитания и удерживать больше паводковых вод, обеспечивая при этом более экологичные и устойчивые к наводнениям игры в гольф.

Лучший опыт

Пока этот сайт работает, его состояние ухудшилось. Нетронутые и древние особенности ландшафта очевидны, но культурное давление, десятилетия интенсивного ухода, растущие ожидания игроков в гольф и стрессы пригородов затемнили или разрушили его красоту.Наиболее заметно, что обширные посадки деревьев закрывают вид и создают каньоны для коридоров для гольфа. Недавняя стабилизация берега ручья ограничила края небольшими нюансами, разнообразием или разнообразием среды обитания.

План предусматривает, что Oak Meadows должен исследовать и раскрыть прекрасный ландшафт, чтобы создать опыт, который позволит гольфисту проходить через это место изящно, мирно и вдумчиво, восстанавливая, а затем обнажая простое достоинство этой сложной экосистемы. Были предприняты усилия, чтобы характер исторического загородного клуба Elmhurst оставался очевидным.Части первоначального маршрута были сохранены в память о прошлом клуба.

Разработка плана

В 2011 году округ подал общенациональный запрос на квалификацию архитекторов полей для гольфа, чтобы исследовать выполнимость его всеобъемлющих и широкомасштабных целей в отношении Oak Meadows. В их число входят:

  • Поддержание или увеличение емкости накопителей ливневых стоков
  • Создание новых водно-болотных угодий и улучшение общего качества окружающей среды лесного заказника
  • Изменить дизайн поля, чтобы сделать фервеи, ти и грины менее уязвимыми для повреждений от наводнения
  • Защита и увеличение доходов от игры в гольф за счет сокращения простоев из-за наводнений
  • Снижение затрат на долгосрочное техническое обслуживание и повышение «экологичности» методов технического обслуживания
  • Определите местоположение и потребности нового клуба в зависимости от изменений курса


После обстоятельного поиска по всей стране округ выбрал компанию Martin Design Partnership Ltd., который собрал команду архитекторов полей для гольфа, историков архитектуры, инженеров-строителей и инженеров-экологов, биологов и гидрологов, чтобы разработать план для Oak Meadows и определить затраты и альтернативы.

Новый дизайн будет предлагать поле размером 7100 ярдов пар-72. И вместо того, чтобы противостоять природе, оно будет дополнять и поддерживать события наводнения. План сохраняет части первоначального маршрута Elmhurst Country Club, но включает в себя неотразимый ассортимент новых лунок.Маршрут обеспечит множество подъемов и спусков; некоторые будут пересекать или параллельно Солт-Крик, или бродить по заболоченным местам, или перепрыгивать с холма на склон; одни будут открытыми, другие обрамлены дубово-гикориевым лесом. В конечном итоге сайт будет поощрять игроков любого уровня подготовки участвовать в игре и получать от нее удовольствие.

Oak Meadows, прежде всего, должен понравиться и удовлетворить самые разные интересы игроков в гольф. Более великая цель — создать уникальное ощущение места. Если поле для гольфа будет более тесно связано с хорошо функционирующей средой, игроки в гольф будут более вовлечены, а окружающие сообщества выиграют.

Oak Meadows — это поле для гольфа и заповедник. Цель состоит в том, чтобы разработать курс, уважающий ландшафт, позволяющий играть в игру, открывая при этом окружающую среду, ее историю и восстанавливая ее жизненно важные функции.

Улучшение функций управления ливневыми водами

Перед покупкой Oak Meadows, Лесной заповедник сосредоточил свои усилия на приобретении новых открытых пространств, чтобы компенсировать стремительное развитие. Теперь, когда стало меньше возможностей для новых приобретений, акцент сместился на улучшение функций существующих объектов.Район использует перепланировку трассы, чтобы обеспечить потенциал накопления ливневых вод для всего заповедника.

«На первый взгляд предполагалось, что любые усилия по защите гольф-поля от последствий наводнения одновременно снизят полезность собственности для управления ливневыми водами», — говорит Стивенсон. «Но генеральный план Oak Meadows родился из желания опровергнуть это предположение и создать более прочное гольф-поле для отдыха и сохранения.”

Этот типичный пригородный ручей является эпицентром быстро движущихся ливневых нагонов. Как городской поток, Солт-Крик имеет множество характерных проблем. Ранние попытки управления водотоком со стороны Elmhurst Country Club включали строительство берм для защиты от наводнений рядом с Солт-Крик, чтобы ограничить способность ручья получить доступ к своей пойме во время небольших штормов. Кроме того, естественная растительность берегов ручья была заменена дерном, когда поле было разработано в 1920-х годах.Площадь газона расширилась, а неглубокие корни дерна позволили ручью размываться в берега. Кроме того, приток к северу от Солт-Крик был полностью перенаправлен и отведен на юг, обеспечивая незначительное удаление загрязняющих веществ или ценность среды обитания.

Поскольку существует минимальное требование по уменьшению объема 1,5: 1 для заливок в пойме Солт-Крик, группа проектировщиков тщательно изучила выемки и насыпи на этой территории. В результате в рамках проекта предусмотрено более 30 акров футов (более 10 миллионов галлонов) паводковых водохранилищ за счет корректировки отверстий и инженерных работ.

Кроме того, улучшение берегов позволит воде из Соленого ручья затопить окружающий заповедник намного раньше во время шторма, что означает, что заповедник сможет улучшить общую высоту воды в ручье примерно на 6 дюймов в течение 10-летнего дождя. Новые пойменные террасы по берегам с растительными торосами и ложбинами также увеличат время пребывания стока.

«В целом, этот проект дает возможность создать значительную выгоду для ливневых вод в высокоразвитой области округа Дюпейдж, чего обычно трудно достичь, и в то же время он приносит пользу игрокам в гольф и рекреационному сообществу», — говорит Джон Майер. инженер-строитель в Engineering Resource Associates.

Условия

В 2007, 2009 и 2012 годах рабочая группа DuPage River Salt Creek Workgroup наблюдала за точками вдоль водораздела ручья, который охватывает 152 квадратных мили урбанизированной земли в западных округах Кук и восточный DuPage и включает в себя основной ствол ручья длиной 42 линейных мили. Группа выбрала несколько мест, чтобы установить базовые условия. Результаты показали деградировавшие водные сообщества по всему водному пути. Дальнейший статистический анализ показал, что большую часть деградации объясняет плохая среда обитания.Область за низкой головкой плотины на Oak Meadows, в частности, страдает от низких уровней растворенного кислорода.

В ходе опросов рабочих групп

в 2007, 2009 и 2013 годах был измерен Индекс биотической целостности Солт-Крик (IBI), показатель, который количественно оценивает состав биологических сообществ. Статистический анализ помогает проиллюстрировать сложность экосистемы путем измерения разнообразия растений, животных и беспозвоночных. Результаты показали, что на участке Солт-Крик, протекающем через Дубовые луга, водный путь содержит мало разнообразных местных рыб и водных насекомых.Снижение уровня растворенного кислорода и увеличение уровня взвешенных отложений отрицательно сказывается на рыбах и макробеспозвоночных, населяющих водный путь. Короче говоря, Солт-Крик превратился в среду, враждебную водным организмам.

Ранние попытки стабилизировать береговую линию и предотвратить наводнения мало что сделали для замедления эрозии. Построенные бермы только помогли предотвратить повторное попадание отступающих паводковых вод в Солт-Крик, усугубив ущерб, нанесенный наводнением полю для гольфа. Внутри канала нет никаких изменений глубины или скорости воды.Вне русла водно-болотных угодий, лесного покрова и необходимых подпорных водоемов не существует, и две небольшие дамбы блокируют проход рыбы вверх по течению. Отсутствие колебаний глубины воды, скорости воды и небольшого укрытия на заводе ограничивали любую возможность поддерживать или увеличивать популяции рыб и насекомых, что является центральной целью Закона о чистой воде.

В тесном сотрудничестве с Interfluve Inc. команда дизайнеров Oak Meadows разработала план, который улучшит гидравлику ручья, качество воды, миграцию наносов, среду обитания заводей и биологическое разнообразие.

Расширение водно-болотных угодий и естественное восстановление

Улучшение проекта требует обширного расширения среды обитания, включая восстановление почти 67 акров прибрежных территорий, прерий, саванн и лесов. «Это обеспечит необходимую переходную зону между ручьем, водно-болотными угодьями и возвышенностями, а также территориями, которые будут использоваться для активного отдыха», — говорит Эрин Панде, директор экологических служб ERA. «Местные насаждения, связанные с компонентами проекта по созданию водно-болотных угодий и улучшению возвышенностей, будут иметь решающее значение для обеспечения этих выгод.Эрозия берегов будет замедлена, а сток ливневых вод будет замедлен за счет глубоко укоренившейся местной растительности и естественным образом обработан путем локализации и фильтрации до входа в Солт-Крик ».

Предлагаемый план включает удаление чужеродной инвазивной растительности вдоль берегов Солт-Крик и обрезку врезанных берегов, чтобы река могла попасть в поймы. Берега будут переделаны для создания террасы поймы. На этих территориях будут созданы холмы и впадины, чтобы увеличить время пребывания ливневых стоков и создать сложные среды обитания за счет вкрапления водно-болотных угодий и прибрежной растительности.Чистый эффект — добавление почти 33 акров водно-болотных угодий.

Улучшения In-Stream

Солт-Крик — эпицентр стремительно развивающейся системы отвода ливневых вод. На протяжении многих лет землевладельцы пытались решить проблемы наводнений, связанные с этой системой.

Солт-Крик был преобразован, углублен и выпрямлен, чтобы предотвратить перетекание паводковых вод на окружающую землю, но вода с высокой скоростью, захваченная внутри канала, вызвала эрозию берегов.Замена прибрежной растительности дерном еще больше ослабила берега. Для стабилизации береговой линии были установлены конструктивные решения. Хотя эти методы стабилизируют банки, они не решают существующих биологических проблем.

Правила

требуют, чтобы городские очистные сооружения сточных вод производили необходимую модернизацию для повышения уровня растворенного кислорода. Чтобы увеличить уровни, муниципалитет Вуд-Дейла предложил модифицировать дамбы в Оук-Мидоуз. Еще в 2008 году исследования определили, что удаление плотин является рентабельным способом улучшения качества воды.Для внесения изменений потребуется одобрение Агентства по охране окружающей среды штата Иллинойс и постоянный мониторинг для обеспечения повышения уровня растворенного кислорода.

Работая в тесном сотрудничестве с Inter-Fluve Inc., команда разработала план по улучшению функции ручья водотока в более исторических местах и ​​функциях. Ранний анализ показал, как возросшая частота и масштабы городского стока изменили русло, отсоединили его от поймы и создали поток, в значительной степени лишенный среды обитания. Чтобы улучшить это, плотины будут сняты, а канал сужен, чтобы улучшить водные колебания и сплошность наносов, а также позволить паводковой воде с большей частотой попадать на пойму.Узкий канал позволит областям «объединения и бега» развиваться и сохраняться. Среда обитания в русле будет включать различный гравий и валуны, а также большие леса, чтобы способствовать среде обитания видов.

Часть плана Oak Meadows включает изменение центральной линии отвода реки Солт-Крик. Это в сочетании с дополнительным ослаблением паводков и реконструкцией берегов с помощью биоинженерных методов стабилизации почвы улучшит структуру берегов и улучшит усвоение загрязнений и качество воды. Эти методы будут включать в себя поверхностную обработку берегов тканью и лифты для грунта с тканевым покрытием [FES] с установкой пальцев из бревенчатых камней на уровне воды и ниже ее, чтобы обеспечить защиту от размыва на чувствительных участках берега реки.

Эти обработки позволят растительности взять на себя работу по стабилизации берегов ручья, как это делалось раньше. Такое «смягчение» границы раздела ручья и поймы имеет дополнительные преимущества как для качества воды, так и для среды обитания. Небольшой приток Солт-Крик будет изгибаться в месте, где он существовал ранее в 1939 году. Сочетание этих методов сократит количество питательных веществ и общее количество взвешенных твердых веществ [TSS].

«Сложность способствует биологическому разнообразию, что является одной из ключевых целей проекта», — говорит Стивен МакКракен, рабочая группа Dupage River Salt Creek и The Conservation Foundation.«Здоровая система — это сложная система, способная приспособиться к различным изменяющимся условиям, присущим городским потокам. Кроме того, эти устройства для контроля небольших содержаний восстановят естественный перенос наносов через систему и позволят уровням воды выше по течению колебаться в естественных сезонных условиях ».

Эти улучшения создадут укрытие для рыбы и места лежбища черепах, вызовут местную очистку и создадут более неоднородное русло ручья. В рамках этой фазы небольшой приток к северу от Солт-Крик вернется к своему меандру 1939 года, что обеспечит улучшенную среду обитания и уменьшит общее количество взвешенных твердых частиц.

Берег ручья, боковой канал и пойменные водно-болотные угодья добавят разнообразия, а также создадут необходимые убежища от наводнений для водных видов, живущих в режиме внезапных паводков этого ультрагородского ручья. Модификации будут способствовать рассеиванию энергии наводнения по пойме. Частые затопления этой поверхности будут способствовать улучшению биологической функции и связи между руслом и границей поймы.

Мониторинг проекта

Мониторинг

по всему атершиду, проведенный Рабочей группой DuPage River Salt Creek (DRSCW) в 2007, 2009 и 2012 годах, показал, что водные сообщества деградировали по всему водоразделу.Статистический анализ распределения этих сообществ показал, что плохая среда обитания по всему бассейну объясняет большую часть этой деградации. Программа мониторинга водосбора включала ряд участков на участке, позволяющих установить исходные условия. Первоначальный мониторинг и анализ Солт-Крик выявили, что территория за плотиной в южной части участка пострадала от низкого уровня растворенного кислорода (DO).

Недавнее постановление потребовало модернизации существующих муниципальных очистных сооружений для повышения уровня растворенного кислорода (DO).Муниципалитет Вуд-Дейл предложил временное решение, которое включало удаление плотины. Этот начальный шаг потребовал одобрения Государственного агентства по охране окружающей среды (IEPA) с условием мониторинга и анализа. Плотина будет удалена в рамках модернизации русла ручья, и мониторинг будет продолжен для обеспечения повышения уровней DO.

Этот непрерывный мониторинг жизненно важен. Обзор и анализ после проекта продемонстрируют положительное влияние образования среды обитания на качество воды.DRSCW продолжит мониторинг DO, рыбы и насекомых на участке для оценки качества воды и экологического воздействия улучшений.

Статистический анализ IBI, обычно в загрязненных водах, иллюстрирует сложность экосистемы путем измерения диапазона разнообразия растений, животных и беспозвоночных. Об успехе плана восстановления реки будут судить по улучшениям в водной биологии и визуальной эстетике.

Исследования

DRSCW в 2007, 2009 и 2013 годах показали, что на этом участке мало рыб и насекомых.Действия в рамках плана восстановления реки были тщательно выбраны для улучшения условий для более разнообразных местных популяций речных рыб и насекомых. Размещение этих групп населения поможет агентствам по управлению поверхностными водами Солт-Крик выполнить свои обязательства в соответствии с Законом о чистой воде.


Грегори Э. Мартин — президент Martin Design Partnership, базирующийся в Батавии, штат Иллинойс.

Насосы

— Лабораторное руководство по прикладной механике жидкостей

В системах водоснабжения и водоотведения насосы обычно устанавливаются у источника для повышения уровня воды и в промежуточных точках для повышения давления воды.Компоненты и конструкция насосной станции жизненно важны для ее эффективности. Центробежные насосы чаще всего используются в системах водоснабжения и водоотведения, поэтому важно знать, как они работают и как их проектировать. Центробежные насосы имеют ряд преимуществ перед другими типами насосов, в том числе:

  • Простота конструкции — нет клапанов, поршневых колец и т.д .;
  • Высокая эффективность;
  • Возможность работы против переменного напора;
  • Подходит для привода от высокоскоростных первичных двигателей, таких как турбины, электродвигатели, двигатели внутреннего сгорания и т. Д.; и
  • Непрерывный разряд.

Центробежный насос состоит из вращающегося вала, который соединен с рабочим колесом, которое обычно состоит из изогнутых лопастей. Рабочее колесо вращается внутри корпуса и всасывает жидкость через проушину корпуса (точка 1 на рисунке 10.1). Кинетическая энергия жидкости увеличивается из-за энергии, добавляемой крыльчаткой, и поступает в нагнетательный конец корпуса, который имеет расширяющуюся площадь (точка 2 на рисунке 10.1). Соответственно увеличивается давление внутри жидкости.

Рисунок 10.1: Схема типичного центробежного насоса

Производительность центробежного насоса представлена ​​в виде характеристических кривых на рисунке 10.2 и состоит из следующего:

  • Напор в зависимости от нагнетания,
  • Тормозная мощность (входная мощность) в зависимости от разряда и
  • Эффективность в зависимости от расхода.
Рисунок 10.2: Типичные кривые производительности центробежного насоса при постоянной скорости вращения рабочего колеса. Единицы измерения H и Q произвольны.

Характеристики коммерческих насосов предоставляются производителями. В противном случае насос следует испытать в лаборатории при различных условиях нагнетания и напора для получения таких кривых. Если один насос не может обеспечить расчетный расход и давление, можно рассмотреть дополнительные насосы, включенные последовательно или параллельно с исходным насосом. Должны быть построены характеристические кривые последовательно или параллельно включенных насосов, поскольку эта информация помогает инженерам выбрать необходимые типы насосов и их конфигурацию.

Многие насосы используются по всему миру для перекачивания жидкостей, газов или смесей жидкость-твердое вещество. Насосы используются в автомобилях, плавательных бассейнах, лодках, водоочистных сооружениях, колодцах и т. Д. Центробежные насосы обычно используются при перекачивании воды, сточных вод, нефти и нефтехимии. Важно выбрать насос, который наилучшим образом соответствует потребностям проекта.

Целью этого эксперимента является определение рабочих характеристик двух центробежных насосов, когда они сконфигурированы как один насос, два насоса последовательно и два насоса параллельно.

Каждая конфигурация (один насос, два насоса последовательно и два насоса параллельно) будет испытываться при скоростях вращения насосов 60, 70 и 80 об / сек. Для каждой скорости настольный регулирующий клапан будет установлен на полностью закрытый, 25%, 50%, 75% и 100% открытый. Будет производиться сбор воды по времени, чтобы определить скорость потока для каждого испытания, и будут получены значения напора, гидравлической мощности и общей эффективности.

Для проведения эксперимента с насосами требуется следующее оборудование:

    Стенд гидравлики
  • P6100 и
  • Секундомер.

Гидравлический стенд оснащен одним центробежным насосом, который приводится в действие однофазным двигателем переменного тока и управляется блоком управления скоростью. Вспомогательный насос и блок управления скоростью поставляются для увеличения производительности стенда, так что эксперименты можно проводить с насосами, подключенными последовательно или параллельно. На входе и выходе насосов установлены манометры для измерения напора до и после каждого насоса. Ваттметр используется для измерения входной электрической мощности насосов [10].

7.1. Общая теория насосов

Рассмотрим насос, показанный на рисунке 10.3. Работа, выполняемая насосом на единицу массы жидкости, приведет к увеличению напора, скоростного напора и потенциального напора жидкости между точками 1 и 2. Следовательно:

  • работа насоса на единицу массы = Вт / М
  • увеличение напора на единицу массы
  • увеличение скоростного напора на единицу массы
  • увеличение потенциального напора на единицу массы

в котором:

W : рабочий

M : масса

P : давление

: плотность

v : скорость потока

g : ускорение свободного падения

z : высота

Применяя уравнение Бернулли между точками 1 и 2 на рисунке 10.3 результатов в:

Поскольку разница между высотами и скоростями в точках 1 и 2 незначительна, уравнение принимает следующий вид:

Разделив обе части этого уравнения на:

Правая часть этого уравнения — манометрический напор, H м , следовательно:

Рисунок 10.3: Схема системы насос – трубопровод

7.2. Мощность и КПД

Гидравлическая мощность ( Вт ч ), подаваемая насосом в жидкость, является произведением увеличения давления и расхода:

Повышение давления, создаваемое насосом, можно выразить через манометрический напор,

Следовательно:

Общий КПД () насосно-моторного агрегата можно определить путем деления гидравлической мощности ( Вт, ч ) на входную электрическую мощность ( Вт, и ), т.е.э .:

7.3. Одинарный насос — производительность трубопроводной системы

При перекачивании жидкости насос должен преодолевать потерю давления, вызванную трением в любых клапанах, трубах и фитингах в системе трубопроводов. Эта потеря напора на трение приблизительно пропорциональна квадрату расхода. Общий напор системы, который должен преодолеть насос, складывается из общего статического напора и напора трения. Полный статический напор представляет собой сумму статической высоты всасывания и статического напора нагнетания, которая равна разнице между уровнями воды нагнетания и резервуара источника (Рисунок 10.4). График полного напора для системы трубопроводов называется кривой системы ; он наложен на характеристическую кривую насоса на рис. 10.5. Рабочая точка для комбинации насос-трубопроводная система находится там, где два графика пересекаются [10].

Рисунок 10.4: Система насосов и трубопроводов с указанием статического и полного напора: подъемный насос (слева), насос с затопленным всасыванием (справа)

Рисунок 10.5: Рабочая точка насосно-трубопроводной системы

7.4. Насосы серии Насосы

используются последовательно в системе, где происходят существенные изменения напора без какой-либо заметной разницы в расходе.Когда два или более насоса соединены последовательно, скорость потока во всех насосах остается неизменной; однако каждый насос способствует увеличению напора, так что общий напор равен сумме вкладов каждого насоса [10]. Для насосов серии n:

Составную характеристическую кривую последовательно включенных насосов можно получить, сложив ординаты (напоры) всех насосов для одинаковых значений расхода. Точка пересечения составной характеристической кривой напора и кривой системы показывает рабочие условия (точку производительности) насосов (Рисунок 10.6).

7,5. Насосы параллельно

Параллельные насосы полезны для систем со значительными колебаниями напора и без заметного изменения напора. Параллельно каждый насос имеет одинаковый напор. Однако каждый насос вносит свой вклад в разряд, так что общий расход равен сумме вкладов каждого насоса [10]. Таким образом для насосов:

Составная характеристическая кривая напора получается суммированием расхода всех насосов при одинаковых значениях напора.Типичная кривая трубопроводной системы и рабочая точка насосов показаны на Рисунке 10.7.

Рисунок 10.6: Характеристики двух последовательно соединенных насосов

Рисунок 10.7: Характеристики двух параллельно включенных насосов

8.1. Эксперимент 1: Характеристики одиночного насоса

a) Настройте гидравлические стендовые клапаны, как показано на Рисунке 10.8, для выполнения теста одиночного насоса.

b) Запустите насос 1 и увеличивайте скорость, пока насос не будет работать со скоростью 60 об / сек.

c) Поверните регулирующий клапан стенда в полностью закрытое положение.

d) Запишите давление на входе насоса 1 (P 1 ) и давление на выходе (P 2 ). Запишите входную мощность с ваттметра (Wi). (При полностью закрытом регулирующем клапане нагнетание будет нулевым.)

e) Повторите шаги (c) и (d), установив регулирующий клапан скамьи на 25%, 50%, 75% и 100% открытия.

f) Для каждого положения регулирующего клапана измерьте скорость потока, набрав соответствующий объем воды (минимум 10 литров) в мерный резервуар, или используя ротаметр.

g) Увеличивайте скорость до тех пор, пока насос не будет работать со скоростью 70 и 80 об / с, и повторите шаги с (c) по (f) для каждой скорости.

Рисунок 10.8: Конфигурация гидравлических стендовых клапанов для испытания с одним насосом.

8.2. Эксперимент 2: Характеристики двух насосов серии

a) Настройте гидравлические стендовые клапаны, как показано на рисунке 10.9, для последовательного испытания двух насосов.

b) Запустите насосы 1 и 2 и увеличивайте скорость до тех пор, пока насосы не начнут работать со скоростью 60 об / сек.

c) Поверните регулирующий клапан стенда в полностью закрытое положение.

d) Запишите давление на входе насоса 1 и 2 (P 1 ) и давление на выходе (P 2 ). Запишите входную мощность для насоса 1 с ваттметра (Wi). (При полностью закрытом регулирующем клапане нагнетание будет нулевым.)

e) Повторите шаги (c) и (d), установив регулирующий клапан скамьи на 25%, 50%, 75% и 100% открытия.

f) Для каждого положения регулирующего клапана измерьте скорость потока, набрав соответствующий объем воды (минимум 10 литров) в мерный резервуар, или используя ротаметр.

g) Увеличивайте скорость до тех пор, пока насос не будет работать со скоростью 70 и 80 об / с, и повторите шаги с (c) по (f) для каждой скорости.

Примечание: Показания ваттметра должны быть записаны для обоих насосов, предполагая, что оба насоса имеют одинаковую входную мощность.

Рисунок 10.9: Конфигурация гидравлических стендовых клапанов для серийных испытаний насосов.

8.3. Эксперимент 3: Характеристики двух параллельных насосов

а) Сконфигурируйте гидравлический стенд, как показано на Рисунке 10.10, чтобы провести испытания насосов параллельно.

b) Повторите шаги (b) — (g) в эксперименте 2.

Рисунок 10.10: Конфигурация гидравлических стендовых клапанов для параллельных насосов

Перейдите по этой ссылке, чтобы получить доступ к рабочей книге Excel этого руководства.

9.1. Результат

Запишите свои измерения для экспериментов с 1 по 3 в таблицы исходных данных.

Таблица сырых данных
Одиночный насос: 60 об / с
Положение клапана открыто 0% 25% 50% 75% 100%
Объем (л)
Время (с)
Давление на входе насоса 1, P 1 (бар)
Давление на выходе насоса 1, P 2 (бар)
Входная электрическая мощность насоса 1 (Wi)

Одиночный насос: 70 об / с
Положение клапана открыто 0% 25% 50% 75% 100%
Объем (л)
Время (с)
Давление на входе насоса 1, P 1 (бар)
Давление на выходе насоса 1, P 2 (бар)
Входная электрическая мощность насоса 1 (Wi)

Одиночный насос: 80 об / с
Положение клапана открыто 0% 25% 50% 75% 100%
Объем (л)
Время (с)
Давление на входе насоса 1, P 1 (бар)
Давление на выходе насоса 1, P 2 (бар)
Входная электрическая мощность насоса 1 (Wi)

Два насоса последовательно: 60 об / с
Положение клапана открыто 0% 25% 50% 75% 100%
Объем (л)
Время (с)
Давление на входе насоса 1, P 1 (бар)
Давление на выходе насоса 1, P 2 (бар)
Входная электрическая мощность насоса 1 (Wi)
Давление на входе насоса 2, P 1 (бар)
Давление на выходе насоса 2, P 2 (бар)
Входная электрическая мощность насоса 2 (Wi)

Два насоса последовательно: 70 об / с
Положение клапана открыто 0% 25% 50% 75% 100%
Объем (л)
Время (с)
Давление на входе насоса 1, P 1 (бар)
Давление на выходе насоса 1, P 2 (бар)
Входная электрическая мощность насоса 1 (Wi)
Давление на входе насоса 2, P 1 (бар)
Давление на выходе насоса 2, P 2 (бар)
Входная электрическая мощность насоса 2 (Wi)

Два насоса последовательно: 80 об / с
Положение клапана открыто 0% 25% 50% 75% 100%
Объем (л)
Время (с)
Давление на входе насоса 1, P 1 (бар)
Давление на выходе насоса 1, P 2 (бар)
Входная электрическая мощность насоса 1 (Wi)
Давление на входе насоса 2, P 1 (бар)
Давление на выходе насоса 2, P 2 (бар)
Входная электрическая мощность насоса 2 (Wi)

Два насоса параллельно: 60 об / с
Положение клапана открыто 0% 25% 50% 75% 100%
Объем (л)
Время (с)
Давление на входе насоса 1, P 1 (бар)
Давление на выходе насоса 1, P 2 (бар)
Входная электрическая мощность насоса 1 (Wi)
Давление на входе насоса 2, P 1 (бар)
Давление на выходе насоса 2, P 2 (бар)
Входная электрическая мощность насоса 2 (Wi)

Два насоса параллельно: 70 об / с
Положение клапана открыто 0% 25% 50% 75% 100%
Объем (л)
Время (с)
Давление на входе насоса 1, P 1 (бар)
Давление на выходе насоса 1, P 2 (бар)
Входная электрическая мощность насоса 1 (Wi)
Давление на входе насоса 2, P 1 (бар)
Давление на выходе насоса 2, P 2 (бар)
Входная электрическая мощность насоса 2 (Wi)

Два насоса параллельно: 80 об / с
Положение клапана открыто 0% 25% 50% 75% 100%
Объем (л)
Время (с)
Давление на входе насоса 1, P 1 (бар)
Давление на выходе насоса 1, P 2 (бар)
Входная электрическая мощность насоса 1 (Wi)
Давление на входе насоса 2, P 1 (бар)
Давление на выходе насоса 2, P 2 (бар)
Входная электрическая мощность насоса 2 (Wi)

9.2. Расчеты
  • Если использовался объемный мерный резервуар, рассчитайте расход по формуле:

  • Исправьте измерение повышения давления (выходное давление) на насосе, добавив 0,07 бар, чтобы учесть разницу в 0,714 м по высоте между точкой измерения выходного давления насоса и фактическим выходным соединением насоса.
  • Преобразуйте показания давления из бар в Н / м 2 (1 бар = 10 5 Н / м 2 ), затем рассчитайте манометрический напор из:

  • Рассчитайте гидравлическую мощность (в ваттах) по уравнению 6, где Q выражается в м 3 / с, в кг / м 3 , g в м / с 2 и H м в метрах.
  • Рассчитайте общий КПД по уравнению 7.

Примечание:

— Общий напор для последовательно включенных насосов рассчитывается по уравнению 8b.
— Общий напор для параллельно включенных насосов рассчитывается по уравнению 9b.
— Общая электрическая входная мощность для насосов, подключенных последовательно и параллельно, равна (Wi) pump1 + (Wi) pump2 .

  • Обобщите свои расчеты в таблицах результатов.

Таблицы результатов
Одинарный насос: Н (об / с)
Положение клапана открыто 0% 25% 50% 75% 100%
Расход, Q (л / мин)
Расход, Q (м 3 / с)
Давление на входе насоса 1, P 1 (Н / м 2 )
Скорректированное давление на выходе насоса 1, P 2 (Н / м 2 )
Входная электрическая мощность насоса 1 (Вт)
Напор насоса 1, Hm (м)
Гидравлическая мощность насоса 1, Вт ч (Вт)
Общий КПД насоса 1, η 0 (%)

Два насоса последовательно: N (об / с)
Положение клапана открыто 0% 25% 50% 75% 100%
Расход, Q (л / мин)
Расход, Q (м 3 / с)
Давление на входе насоса 1, P 1 (Н / м 2 )
Скорректированное давление на выходе насоса 1, P 2 (Н / м 2 )
Входная электрическая мощность насоса 1 (Вт)
Давление на входе насоса 2, P1 (Н / м2)
Скорректированное давление на выходе насоса 2, P2 (Н / м2)
Входная электрическая мощность насоса 2 (Вт)
Напор насоса 1, Hm (м)
Гидравлическая мощность насоса 1, Вт · ч (Вт)
Напор насоса 2, Hm (м)
Гидравлическая мощность насоса 2, Вт · ч (Вт)
Общий напор, Hm (м)
Общая гидравлическая мощность, Втч (Вт)
Общая входная электрическая мощность, Вт (Вт)
Общий КПД обоих насосов, η 0 (%)

Два насоса параллельно: N (об / с)
Положение клапана открыто 0% 25% 50% 75% 100%
Расход, Q (л / мин)
Расход, Q (м 3 / с)
Давление на входе насоса 1, P 1 (Н / м 2 )
Скорректированное давление на выходе насоса 1, P 2 (Н / м 2 )
Входная электрическая мощность насоса 1 (Вт)
Давление на входе насоса 2, P1 (Н / м2)
Скорректированное давление на выходе насоса 2, P2 (Н / м2)
Входная электрическая мощность насоса 2 (Вт)
Напор насоса 1, Hm (м)
Гидравлическая мощность насоса 1, Вт · ч (Вт)
Напор насоса 2, Hm (м)
Гидравлическая мощность насоса 2, Вт · ч (Вт)
Общий напор, Hm (м)
Общая гидравлическая мощность, Втч (Вт)
Общая входная электрическая мощность, Вт (Вт)
Общий КПД обоих насосов, η 0 (%)

Используйте предоставленный шаблон, чтобы подготовить лабораторный отчет для этого эксперимента.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *