Что можно сделать своими руками из блока питания компьютера: РадиоКот :: Вторая жизнь компьютерного БП

Содержание

РадиоКот :: Вторая жизнь компьютерного БП

РадиоКот >Схемы >Питание >Блоки питания >

Вторая жизнь компьютерного БП

   Всем привет. Не так давно проводя уборку в гараже наткнулся на старый компьютерный БП. Для современных компьютеров он уже слабоват, а выкидывать было жалко. Тогда и родилась идея создания на его основе мощного источника питания для испытания различных радиолюбительских конструкций. В интернете много информации по переделке той или иной модели компьютерных блоков питания под регулируемые лабораторные источники или под другие цели.

   После измерения радиолюбительским осциллографом Сага выходных пульсаций было выявлено, что компьютерный БП на выходе даёт высокий уровень высокочастотных помех. Тогда было принято решение ограничиться минимальной переделкой самого БП, а регулировку выходного напряжения выполнить по классической схеме. Это связано с тем, что для сглаживания данных помех нужна батарея конденсаторов, разной ёмкости, а общая суммарная ёмкость получается большой. (т.е. при маленькой нагрузке конденсаторы будут долго разряжаться и изменение выходного напряжения будет запаздывать за непосредственной регулировкой движком переменного резистора, при модернизации обратной связи).

   Итак, то что у меня получилось я сегодня Вам и хочу предложить. Начнём с переделки самого БП.

   На фото 1 приведён внешний вид уже переделанного БП. Разберём всё по пунктам на модели переделанного мной БП (Модель указана на схеме)

  1. Выпаиваем из БП все лишние провода, оставляем только нужную нам шину 12 Вольт и 5 Вольт.

  2. Замыкаем на землю провод запуска БП. На плате он подписан pc on и выведен зелёным проводом.

  3. Так как импульсный БП нельзя включать без нагрузки, то на шину 5 вольт следует подключить нагрузку 0.2-0.5 А. Для этого я использовал 2 параллельно соединённых резистора 22 Ом 10 Ватт.

  4. Далее увеличиваем конденсаторы ( 200 Вольт, 330 микрофарад, на

Как сделать из блока питания от компьютера источник постоянного напряжения / Для компьютера и интернета / Самоделка.net — Сделай сам своими руками


Несколько недель назад мне для некого опыта потребовался источник постоянного напряжения 7V и силой тока в 5A. Тут-же отправился на поиски нужного БП в подсобку, но такого там не нашлось. Спустя пару минут я вспомнил о том, что под руки в подсобке попадался блок питания компьютера, а ведь это идеальный вариант!
Пораскинув мозгами собрал в кучу идеи и уже через 10 минут процесс начался.

Для изготовления лабораторного источника постоянного напряжения потребуется:
— блок питания от компьютера
— клеммная колодка
— светодиод
— резистор ~150 Ом
— тумблер
— термоусадка
— стяжки


Блок питания, возможно, найдётся где-то не нужный. В случае целевого приобретения — от $10. Дешевле я не видел. Остальные пункты этого списка копеечные и не дефицитные.

Из инструментов понадобится:
— клеевой пистолет a.k.a. горячий клей (для монтажа светодиода)
— паяльник и сопутствующие материалы (олово, флюс…)

— дрель
— сверло диаметром 5мм
— отвертки
— бокорезы (кусачки)

Изготовление

Итак, первое, что я сделал — проверил работоспособность этого БП. Устройство оказалось исправным. Сразу можно отрезать штекера, оставив 10-15 см на стороне штекера, т.к. он вам может пригодиться. Стоит заметить, что нужно рассчитать длину провода внутри БП так, чтобы его хватило до клемм без натяжки, но и чтобы он не занимал всё свободное пространство внутри БП.

Теперь необходимо разделить все провода. Для их идентификации можно взглянуть на плату, а точнее на площадки, к которым они идут. Площадки должны быть подписаны. Вообще есть общепринятая схема цветовой маркировки, но производитель вашего БП, возможно, окрасил провода иначе. Чтобы избежать «непоняток» лучше самостоятельно идентифицировать провода.

Вот моя «проводная гамма». Она, если я не ошибаюсь, и есть стандартной.
С жёлтого по синий, думаю, ясно. Что означают два нижних цвета?

PG (сокр. от «power good») — провод, который мы используем для установки светодиода-индикатора. Напряжение — 5В.
ON — провод, который необходимо замкнуть с GND для включения блока питания.

В блоке питания есть провода, которые я здесь не описывал. Например, фиолетовый +5VSB. Этот провод мы использовать не будем, т.к. граница силы тока для него — 1А.

Пока провода нам не мешают, нужно просверлить отверстие для светодиода и сделать наклейку с необходимой информацией. Саму информацию можно найти на заводской наклейке, которая находится на одной из сторон БП. При сверлении нужно позаботиться о том, чтобы металлическая стружка не попала вовнутрь устройства, т.к. это может привести к крайне негативным последствиям.

На переднюю панель БП я решил установить клеммную колодку. Дома нашлась колодка на 6 клемм, которая меня устроила.

Мне повезло, т.к. прорези в БП и отверстия для монтажа колодки совпали, да еще и диаметр подошел. Иначе, необходимо либо рассверливать прорези БП, либо сверлить новые отверстия в БП.

Колодка установлена, теперь можно выводить провода, снимать изоляцию, скручивать и лудить. Я выводил по 3-4 провода каждого цвета, кроме белого (-5V) и синего (-12V), т.к. их в БП по одному.

Первый залужен — вывел следующий.

Все провода залужены. Можно зажимать в клемме.

Устанавливаем светодиод

Я взял обычный зелёный индикационный светодиод обычный красный индикационный светодиод (он, как выяснилось, несколько ярче). На анод (длинная ножка, менее массивная часть в головке светодиода) припаиваем серый провод (PG), на который предварительно насаживаем термоусадку. На катод (короткая ножка, более массивная часть в головке светодиода) припаиваем сначала резистор на 120-150 Ом, а к второму выводу резистора припаиваем черный провод (GND), на который тоже не забываем предварительно надеть термоусадку. Когда всё припаяно, надвигаем термоусадку на выводы светодиода и нагреваем ее.

Получается вот такая вещь. Правда, я немного перегрел термоусадку, но это не страшно.

Теперь устанавливаю светодиод в отверстие, которое я просверлил еще в самом начале.

Заливаю горячим клеем. Если его нет, то можно заменить супер-клеем.

Выключатель блока питания

Выключатель я решил установить на место, где раньше у блока питания выходили провода наружу.

Измерял диаметр отверстия и побежал искать подходящий тумблер.

Немного покопался, и нашел идеальный выключатель. За счёт разницы в 0,22мм он отлично встал на место. Теперь к тумблеру осталось припаять ON и GND, после чего установить в корпус.

Основная работа сделана. Осталось навести марафет.

Хвосты проводов, которые не использованы нужно изолировать. Я это сделал термоусадкой. Провода одного цвета лучше изолировать вместе.

Все шнурки аккуратно размещаем внутри.

Прикручиваем крышку, включаем, бинго!

Этим блоком питания можно получить много разных напряжений, пользуясь разностью потенциалов. Учтите, что такой приём не прокатит для некоторых устройств.

Вот тот спектр напряжений, которые можно получить.
В скобках первым идёт положительный, вторым — отрицательный.
24.0V — (12V и -12V)
17.0V — (12V и -5V)
15.3V — (3.3V и -12V)
12.0V — (12V и 0V)
10.0V — (5V и -5V)
8.7V — (12V и 3.3V)
8.3V — (3.3V и -5V)
7.0V — (12V и 5V)
5.0V — (5V и 0V)
3.3V — (3.3V и 0V)
1.7V — (5V и 3.3V)
-1.7V — (3.3V и 5V)
-3.3V — (0V и 3.3V)
-5.0V — (0V и 5V)
-7.0V — (5V и 12V)
-8.7V — (3.3V и 12V)
-8.3V — (-5V и 3.3V)
-10.0V — (-5V и 5V)
-12.0V — (0V и 12V)
-15.3V — (-12V и 3.3V)
-17.0V — (-12V и 5V)
-24.0V — (-12V и 12V)

Вот так мы получили источник постоянного напряжения с защитой от КЗ и прочими плюшками.

Рационализаторские идеи:
— использовать самозажимные колодки, как предложили тут, либо использовать клеммы с изолированными барашками, чтобы не хватать в руки отвёртку лишний раз.

Источник: habrahabr.ru

Переделка компьютерного блока питания — Блоки питания — Источники питания

Подробное описание.

Хороший лабораторный блок питания — это довольно дорогое удовольствие и не всем радиолюбителям оно по карману.
Тем не менее в домашних условиях можно собрать не плохой по характеристикам блок питания, который вполне справится и с обеспечением питания различных радиолюбительских конструкций, и так же может служить и зарядным устройством для различных аккумуляторов.
Собирают такие блоки питания радиолюбители, как правило из компьютерных БП АТХ, которые везде доступны и дешевы.

В этой статье уделено мало внимания самой переделке АТХ, так как переделать компьютерный БП для радиолюбителя средней квалификации в лабораторный, или для каких то иных целей, обычно не составляет особого труда, а вот у начинающих радиолюбителей возникает по этому поводу много вопросов. В основном какие детали в БП нужно удалить, какие оставить, что добавить, чтобы такой БП превратить в регулируемый, ну и так далее.

Вот специально для таких радиолюбителей, я хочу в этой статье подробно рассказать о переделке компьютерных блоков питания АТХ в регулируемые БП, которые можно будет использовать и как лабораторный блок питания, и как зарядное устройство.

Для переделки нам понадобится исправный блок питания АТХ, который выполнен на ШИМ контроллере TL494 или его аналогах.
Схемы блоков питания на таких контроллерах в принципе отличаются друг от друга не сильно и все в основном похожи. Мощность блока питания не должна быть меньше той, которую планируете в будущем снимать с переделанного блока.

Давайте рассмотрим типовую схему блока питания АТХ, мощностью 250 Вт. У блоков питания «Codegen» схема почти не отличается от этой.

Схемы всех подобных БП состоят из высоковольтной и низковольтной части. На рисунке печатной платы блока питания (ниже) со стороны дорожек, высоковольтная часть отделена от низковольтной широкой пустой полосой (без дорожек), и находится справа (она меньше по размеру). Её мы трогать не будем, а будем работать только с низковольтной частью.

Это моя плата и на её примере я Вам покажу вариант переделки БП АТХ.

Низковольтная часть рассматриваемой нами схемы, состоит из ШИМ контроллера TL494, схемы на операционных усилителях, которая контролирует выходные напряжения блока питания, и в случае их несоответствия — даёт сигнал на 4-ю ножку ШИМ контроллера на выключение блока питания.
Вместо операционного усилителя на плате БП могут быть установлены транзисторы, которые в принципе выполняют ту же самую функцию.
Дальше идёт выпрямительная часть, которая состоит из различных выходных напряжений, 12 вольт, +5 вольт, -5 вольт, +3,3 вольта, из которых для наших целей будет необходим только выпрямитель +12 вольт (жёлтые выходные провода).
Остальные выпрямители и сопутствующие им детали необходимо будет удалить, кроме выпрямителя «дежурки», который нам понадобится для питания ШИМ контроллера и куллера.

Выпрямитель дежурки даёт два напряжения. Обычно это 5 вольт и второе напряжение может быть в районе 9-10 вольт (используется для дежурного питания ТЛ-ки).
Мы и будем использовать для постоянного питания ШИМа второй выпрямитель. К нему также подключается и вентилятор (куллер).
На схеме ниже, я пометил высоковольтную часть зелёной линией, выпрямители «дежурки» — синей линией, а всё остальное, что необходимо будет удалить — красным цветом.

Итак всё, что помечено красным цветом — выпаиваем, а в нашем выпрямителе 12 вольт меняем штатные электролиты (16 вольт) на более высоковольтные, которые будут соответствовать будущему выходному напряжению нашего БП. Также необходимо будет выпаять в цепи 12-ой ножки ШИМ контроллера и средней части обмотки согласующего трансформатора — резистор R25 и диод D73 (если они есть в схеме), и вместо них в плату впаять перемычку, которая на схеме нарисована синей линией (можно просто замкнуть диод и резистор не выпаивая их). В некоторых схемах этой цепи может и не быть.

Далее в обвязке ШИМа на первой его ноге оставляем только один резистор, который идёт к выпрямителю +12 вольт.
На второй и третьей ноге ШИМа — оставляем только Задающую RC цепочку (на схеме R48 C28).
На четвёртой ноге ШИМа оставляем только один резистор (на схеме обозначен как R49. Да, ещё во многих схемах между 4-ой ногой и 13-14 ножками ШИМа — обычно стоит электролитический конденсатор, его (если он есть) тоже не трогаем, так как он предназначен для мягкого старта БП. В моей плате его просто не было, поэтому я его поставил.
Ёмкость его в стандартных схемах 1-10 мкФ.
Потом освобождаем 13-14 ножки от всех соединений, кроме соединения с конденсатором, и также освобождаем 15-ю и 16-ю ножки ШИМа.

После всех выполненных операций у нас должно получиться следующее.

Вот как это выглядит у меня на плате (ниже на рисунке).
Дроссель групповой стабилизации я здесь перемотал проводом 1,3-1,6 мм в один слой на родном сердечнике. Поместилось где то около 20-ти витков, но можно этого не делать и оставить тот, что был. С ним тоже всё хорошо работает.
На плату я так же установил другой нагрузочный резистор, который у меня состоит из двух параллельно включенных резисторов по 1,2 кОм 3W, общее сопротивление получилось 560 Ом.
Родной нагрузочный резистор рассчитан на 12 вольт выходного напряжения и имеет сопротивление 270 Ом. У меня выходное напряжение будет около 40-ка вольт, поэтому я поставил такой резистор.
Его нужно рассчитывать (при максимальном выходном напряжении БП на холостом ходу) на ток нагрузки 50-60 мА. Так как работа БП совсем без нагрузки не желательна, поэтому он и ставится в схему.

Вид платы со стороны деталей.

Теперь что необходимо будет нам добавить в подготовленную плату нашего БП, чтобы превратить его в регулируемый блок питания;

В первую очередь, чтобы не пожечь силовые транзисторы, нам нужно будет решить проблему стабилизации тока нагрузки и защиту от короткого замыкания.
На форумах по переделке подобных блоков, встретил такую интересную вещь — при экспериментах с режимом стабилизации тока, на форуме pro-radio, участник форума DWD привёл такую цитату, приведу её полностью:

«Я как-то рассказывал, что не смог получить нормальную работу ИБП в режиме источника тока при низком опорном напряжении на одном из входов усилителя ошибки ШИМ контроллера.
Более 50мВ — нормально, а меньше — нет. В принципе, 50мВ это гарантированный результат, а в принципе, можно получить и 25мВ, если постараться. Меньше — ни как не получалось. Работает не устойчиво и возбуждается или сбивается от помех. Это при плюсовом напряжении сигнала с датчика тока.
Но в даташите на TL494 есть вариант, когда с датчика тока снимается отрицательное напряжение.
Я переделал схему на этот вариант и получил отличный результат.
Вот фрагмент схемы.

Собственно, всё стандартно, кроме двух моментов.
Во первых, лучшая стабильность при стабилизации тока нагрузки при минусовом сигнале с датчика тока это случайность или закономерность?
Схема прекрасно работает при опорном напряжении в 5мВ!
При положительном сигнале с датчика тока стабильная работа получается только при более высоких опорных напряжениях (не менее 25мВ).
При номиналах резисторов 10Ом и 10КОм ток стабилизировался на уровне 1,5А вплоть до КЗ выхода.
Мне ток нужен больше, по этому поставил резистор на 30Ом. Стабилизация получилась на уровне 12…13А при опорном напряжении 15мВ.
Во вторых (и самое интересное), датчика тока, как такового у меня нет…
Его роль выполняет фрагмент дорожки на плате длиной 3см и шириной 1см. Дорожка покрыта тонким слоем припоя.
Если в качестве датчика использовать эту дорожку на длине 2см, то ток стабилизируется на уровне 12-13А, а если на длине 2,5см, то на уровне 10А.»

 

Так как этот результат оказался лучше стандартного, то и мы пойдём таким-же путём.

Для начала нужно будет отпаять от минусового провода средний вывод вторичной обмотки трансформатора (гибкую косу), или лучше не выпаивая её (если позволяет печатка) — перерезать печатную дорожку на плате, которая соединяет её с минусовым проводом.
Дальше нужно будет впаять между разрезом дорожки токовый датчик (шунт), который будет соединять средний вывод обмотки с минусовым проводом.

Шунты лучше всего брать из неисправных (если найдёте) стрелочных ампервольтметров (цешек), или из китайских стрелочных или цифровых приборов. Выглядят они примерно так. Вполне достаточно будет куска длинной 1,5-2,0 см.

Можно конечно попробовать поступить и так, как написал выше DWD, то есть если дорожка от косы к общему проводу достаточной длинны, то попробовать её использовать в качестве токового датчика, но я этого делать не стал, у меня плата попалась другой конструкции, вот такая, где обозначены красной стрелкой две проволочные перемычки, которые соединяли вывод косы с общим проводом, а между ними проходили печатные дорожки.

Поэтому после удаления лишних деталей с платы, я выпаял эти перемычки и на их место впаял токовый датчик от неисправной китайской «цешки».
Потом на место припаял перемотанный дроссель, установил электролит и нагрузочный резистор.
Вот ка выглядит кусок платы у меня, где я красной стрелкой пометил установленный токовый датчик (шунт) на месте проволочной перемычки.


Потом отдельным проводом необходимо этот шунт соединить с ШИМом. Со стороны косы — с 15-ой ножкой ШИМа через резистор 10 Ом, а 16-ю ножку ШИМ-а соединить с общим проводом.
С помощью резистора 10 Ом можно будет подобрать максимальный выходной ток нашего БП. На схеме DWD стоит резистор 30 Ом, но начните пока с 10-ти Ом. Увеличение номинала этого резистора — увеличивает максимальный выходной ток БП.

Как я уже раньше говорил, выходное напряжение блока питания у меня около 40-ка вольт. Для этого я перемотал себе трансформатор, но в принципе можно не перематывать, а повысить выходное напряжение другим способом, но для меня этот способ оказался удобнее.
Обо всём этом я расскажу немного позже, а пока продолжим и начнём устанавливать на плату необходимые дополнительные детали, чтобы у нас получился работоспособный блок питания или зарядное устройство.

Ещё раз напомню, что если у Вас на плате между 4-ой и 13-14 ножками ШИМа не стоял конденсатор (как в моём случае), то его желательно добавить в схему.
Так же нужно будет установить два переменных резистора (3,3-47 кОм) для регулировки выходного напряжения (V) и тока (I) и соединить их с нижеприведённой схемой. Провода соединения желательно делать как можно короче.
Ниже я привёл только часть схемы, которая нам необходима — в такой схеме проще будет разобраться.
На схеме вновь установленные детали обозначены зелёным цветом.

Схема вновь установленных деталей.

Приведу немного пояснений по схеме;
— Самый верхний выпрямитель — это дежурка.
— Величины переменных резисторов показаны, как 3,3 и 10 кОм — стоят такие, какие нашлись.
— Величина резистора R1 указана 270 Ом — он подбирается по необходимому ограничению тока. Начинайте с малого и у Вас он может оказаться совсем другой величины, например 27 Ом;
— Конденсатор С3 я не пометил, как вновь установленные детали в расчёте на то, что он может присутствовать на плате;
— Оранжевой линией обозначены элементы, которые может придётся подбирать или добавлять в схему в процессе наладки БП.

Дальше разбираемся с оставшимся 12-ти вольтовым выпрямителем.
Проверяем, какое максимальное напряжение способен выдать наш БП.
Для этого временно отпаиваем от первой ноги ШИМа — резистор, который идёт на выход выпрямителя (по схеме выше на 24 кОм), затем нужно включить блок в сеть, предварительно соединить в разрыв любого сетевого провода, в качестве предохранителя — обычную лампу накаливания 75-95 Вт. Блок питания в этом случае выдаст нам максимальное напряжение, на которое он способен.

Прежде, чем включать блок питания в сеть, убедитесь, что электролитические конденсаторы в выходном выпрямителе заменены на более высоковольтные!

Все дальнейшие включения БП производить только с лампой накаливания, она убережёт БП от аварийных ситуаций, в случае каких либо допущенных ошибок. Лампа в этом случае просто загорится, а силовые транзисторы останутся целыми.

Дальше нам нужно зафиксировать (ограничить) максимальное выходное напряжение нашего БП.
Для этого резистор на 24 кОм (по схеме выше) от первой ноги ШИМа, меняем временно на подстроечный, например 50 кОм, и выставляем им необходимое нам максимальное напряжение. Желательно выставить так, что бы оно было меньше процентов на 10-15 от максимального напряжения, которое способен выдать наш БП. Вернее даже не желательно, а необходимо, для того, чтобы остался небольшой запас для регулировки ШИМ, то есть для стабилизации напряжения и тока.
Потом на место подстроечного резистора впаять постоянный.

Если Вы планируете этот БП использовать в качестве зарядного устройства, то штатную диодную сборку используемую в этом выпрямителе, можно оставить, так как её обратное напряжение 40 вольт и для зарядного устройства она вполне подойдёт.
Тогда максимальное выходное напряжение будущего зарядного нужно будет ограничить выше описанным способом, в районе 15-16 вольт. Для зарядного устройства 12-ти вольтовых АКБ это вполне достаточно и повышать этот порог не нужно.
Если планируете использовать Ваш переделанный БП в качестве регулируемого блока питания, где выходное напряжение будет больше 20-ти вольт, то эта сборка уже не подойдёт. Её нужно будет заменить на более высоковольтную с соответствующим током нагрузки.
Себе на плату я поставил две сборки в параллель по 16 ампер и 200 вольт.
При конструировании выпрямителя на таких сборках, максимальное выходное напряжение будущего блока питания может быть от 16-ти и до 30-32 вольт. Всё зависит от модели блока питания.
Если при проверке БП на максимально-выдавамое напряжение, БП выдаёт напряжение меньше планируемого, и кому то нужно будет больше напряжения на выходе (30-40 вольт например), то нужно будет вместо диодной — сборки собрать диодный мост, косу отпаять от своего места и оставить висеть в воздухе, а минусовой вывод диодного моста соединить на место выпаянной косы.

Схема выпрямителя с диодным мостом.

С диодным мостом выходное напряжение блока питания будет в два раза больше.
Очень хорошо для диодного моста подходят диоды КД213 (с любой буквой), выходной ток с которыми может достигать до 10-ти ампер, КД2999А,Б (до 20-ти ампер) и КД2997А,Б (до 30-ти ампер). Лучше всего конечно последние.
Все они выглядят вот так;

Нужно будет в таком случае продумать крепление диодов к радиатору и изоляцию их друг от друга.
Но я пошёл другим путём — просто перемотал трансформатор и обошёлся, как говорил выше. двумя диодными сборками в параллель, так как на плате было для этого предусмотрено место. Для меня этот путь оказался проще.

Перемотать трансформатор особого труда не составляет и как это сделать — рассмотрим ниже.

Для начала выпаиваем трансформатор из платы и смотрим по плате, к каким выводам припаяны 12-ти вольтовые обмотки.

В основном встречаются двух видов. Такие, как на фото.
Дальше нужно будет разобрать трансформатор. Проще конечно будет справиться с меньшими по размеру, но и бОльшие тоже поддаются.
Для этого нужно очистить сердечник от видимых остатков лака (клея), взять небольшую ёмкость, налить в неё воды, положить туда трансформатор, поставить на плиту, довести до кипения и «поварить» наш трансформатор 20-30 минут.

Для меньших трансформаторов это вполне достаточно (можно и меньше) и подобная процедура абсолютно не повредит сердечнику и обмоткам трансформатора.
Потом, придерживая сердечник трансформатора пинцетом (можно прямо в таре) — острым ножом пробуем отсоединить ферритовую перемычку от Ш-образного сердечника.

Делается это довольно легко, так как лак размягчается от такой процедуры.
Дальше так же аккуратно, пробуем освободить каркас от Ш-образного сердечника. Это тоже довольно просто делается.

Потом сматываем обмотки. Сначала идёт половина первичной обмотки, в основном около 20-ти витков. Сматываем её и запоминаем направление намотки. Второй конец этой обмотки можно и не отпаивать от места его соединения с другой половиной первички, если это не мешает дальнейшей работе с трансформатором.

Потом сматываем все вторички. Обычно идёт 4 витка сразу обеих половин 12-ти вольтовых обмоток, потом 3+3 витка 5-ти вольтовых. Всё сматываем, отпаиваем от выводов и наматываем новую обмотку.
Новая обмотка будет содержать 10+10 витков. Наматываем её проводом, диаметром 1,2 — 1,5 мм, или набором более тонких проводов (легче мотать) соответствующего сечения.
Начало обмотки припаиваем к одному из выводов, к которым была припаяна 12-ти вольтовая обмотка, мотаем 10 витков, направление намотки роли не играет, выводим отвод на «косу» и в том же направлении, что и начинали — мотаем ещё 10 витков и конец припаиваем на оставшийся вывод.
Дальше изолируем вторичку и наматываем на неё, смотанную нами ранее, вторую половину первички, в том же направлении, как она была намотана ранее.
Собираем трансформатор, впаиваем в плату и проверяем работу БП.

Если в процессе регулировки напряжения возникают какие либо посторонние шумы, писки, трески, то чтобы избавиться от них, нужно будет подобрать RC-цепочку, обведённую оранжевым эллипсом ниже на рисунке.

В некоторых случаях можно совсем убрать резистор и подобрать конденсатор, а в некоторых без резистора нельзя. Можно будет попробовать добавить конденсатор, или такую же RC цепочку, между 3 и 15 ножками ШИМа.
Если это не помогает, то нужно установить дополнительные конденсаторы (обведены оранжевым), номиналы их приблизительно 0,01 мкф. Если это мало помогает, то установить ещё и дополнительный резистор 4,7 кОм от второй ноги ШИМа к среднему выводу регулятора напряжения (на схеме не показан).

Потом нужно будет нагрузить выход БП, например автомобильной лампой ватт на 60, и попробовать регулировать ток резистором «I».
Если предела регулировки тока будет мало, то нужно увеличить номинал резистора, который идёт от шунта (10 Ом), и снова попробовать регулировать ток.
Не следует ставить вместо этого резистора подстроечный, изменяйте его величину, только установкой другого резистора с большим или меньшим номиналом.

Может случиться так, что при увеличении тока — лампа накаливания в цепи сетевого провода загорится. Тогда нужно уменьшить ток, выключить БП и вернуть номинал резистора к предыдущему значению.

Ещё, для регуляторов напряжения и тока, лучше всего попробовать приобрести регуляторы СП5-35, которые бывают с проволочными и жесткими выводами.

Это аналог многооборотных резисторов (всего на полтора оборота), ось которого совмещена с плавным и грубым регулятором. Регулируется сначала «Плавно», потом когда у него заканчивается предел, начинает регулироваться «Грубо».
Регулировка такими резисторами очень удобна, быстра и точна, гораздо лучше, чем многооборотником. Но если их достать не удастся, то приобретите обычные многооборотные, такие например;


Ну вот вроде я всё Вам и рассказал, что планировал довести по переделке компьютерного БП, и надеюсь, что всё понятно и доходчиво.

Если у кого-то возникнут какие либо вопросы по конструкции блока питания, задавайте их ЗДЕСЬ на форуме.

Удачи Вам в конструировании!

 

Ремонт блока питания компьютера своими руками пошагово

Ремонт блока питания компьютера своими руками пошагово

Ремонт блока питания компьютера своими руками пошагово — во многом проблемы компьютерному блоку питания доставляют наши электросети. Не секрет, что стабильность переменного напряжения в сети оставляет желать лучшего, вот такая ситуация чаще всего приводит к негативным последствиям с бытовой техникой. Скачки сетевого напряжения пагубно влияют и на блок питания ПК, даже если он находится в режиме ожидания.



Данная публикация посвящена радиолюбителям, которые имеют навыки в ремонте электроники, и даются советы как сделать ремонт блока питания компьютера своими руками пошагово. Существует доступный метод проверки на исправность источника напряжения. Прежде, чем приступать к поиску неисправности его следует отсоединить от системной платы, естественно при обесточенном компьютере. Элементарно разъединяются коннекторы с проводами идущие с блока питания на материнку. У разных моделей БП АТХ основные соединительные разъемы бывают как 20-ти пиновые так и 24 pin, плюс вспомогательные провода питания 4-х или 6-ти pin. Эти добавочные провода предназначены для обеспечения напряжением +12v процессора и видеокарты. После того как все компоненты будут отсоединены от блока, начинается сам процесс проверки устройства.

Для этого нужно взять самый большой жгут проводов и на его разъеме найти два контакта обозначенные номерами 15 и 16 с зеленым и черным проводом. На разных соединителях нумерация может отличаться, но основной ориентир, это зеленый и любой черный провод. Затем тестовую модель включить в сеть 220v, и небольшим отрезком провода замкнуть два этих контакта. В следствии этого замыкания подается сигнал на материнскую плату и БП стартует. Здесь этот кусочек замыкающего провода просто играет роль обыкновенного выключателя. В случае после замыкания вентилятор начал работать, то с большей вероятностью можно определить, что блок питания находится в рабочем состоянии. Поэтому проблему необходимо искать в другом месте.

Последовательность ремонта

Следовательно, начиная пошагово ремонт блока питания компьютера своими руками нудно понимать, что установленные с силовых цепях конденсаторы имеют большую емкость. Именно они накапливают огромный запас энергии для последующей его передачи в нагрузку. Поэтому нужно всегда быть осторожным при работе с силовой частью, так что прежде чем начинать проверку прибора обязательно следует разрядить емкости. Иначе можно получить такой разряд, что мало не покажется, к тому же накопленная энергия в конденсаторах сохраняется долгое время.

У меня был случай, когда я вспомнил о валявшемся пол года в сарае конденсаторе на 10000uf 400v. А когда я хотел почистить его от пыли, то получил такой разряд, что в глазах потемнело и кожа на пальцах лопнула от ожога. Так что будьте всегда предельно внимательны во время работы с приборами, где установлены конденсаторы с большой емкостью. Разрядить кондер очень просто, берете (в зависимости от емкости) резистор 1 кОм мощностью 10 Вт, или обыкновенную электрическую лампочку и происходит мягкий разряд.


Разборка устройства

Первым делом естественно снимается крышка корпуса и в обязательном порядке приводится в надлежащий вид все внутреннее пространство, то есть удаляется вся накопившаяся там пыль. Образовавшийся там наслоение от пыли играет свою негативную роль в плане отвода тепла исходящего от силовых элементов. Поэтому излишнее загрязнение компьютерного блока питания также может быть одним из факторов выхода его из строя. Потом уже по сути начинается ремонт блока питания компьютера своими руками пошагово.

Одной из причин отказа в работе прибора может быть банальное перегорание предохранителя 5А. Так что он проверяется на обрыв мультиметром в первую очередь и если показывает обрыв, то заменить на новый или сделать «жучок» из сгоревшего. Для этого поверх стеклянного цилиндра предохранителя припаять медную жилу Ø 0,16мм, затем подать сетевое напряжение на блок — если вентилятор работает, значит все нормально. Теперь этот «жучок» нужно убрать, а вместо его поставить новый, заводского изготовления.

Поиск неисправных конденсаторов

Как правило компьютерные блоки питания смонтированы с использованием электролитических конденсаторов со значительной емкостью. Но вместе с тем есть не добросовестные производители БП, которые в целях экономии устанавливает кондеры с пониженным значением допустимого напряжения. Такие устройства в большинстве случаев относятся к категории дешевых изделий и выходят из строя чаще других. Именно такие электролиты, которые изготовлены без запаса по напряжению становятся главной проблемой в источниках питания.

При малейшем скачке напруги в сети, емкость не выдерживает этого всплеска энергии. При этом происходит либо разрыв оболочки, в следствии сильного нагрева электролита, либо радио-компонент раздувается и их него вытекает электролит. Естественно такие элементы уже не пригодны к дальнейшему использованию и их нужно менять.

Внимание! Плохая работа вентилятора становится причиной вздутия конденсаторов. Все дело в том, что вентилятор должен охлаждать конденсаторы, которые подвергаются нагреву за счет аккумулирования напряжения в них. Поэтому специалисты рекомендуют периодически проводить смазку подшипников вентилятора и чистку всего куллера.

В некоторых случаях визуальных дефектов конденсатора не обнаружено, однако лучше всего перестраховаться и протестировать их омметром с целью выявления внутреннего сопротивления. Если сопротивление велико относительно номинального, то скорее всего нет контакта между обкладкой накопителя электрической энергии и выводом, то-есть — обрыв.

Продолжая тему электролитических накопителей энергии, стоит пояснить такой момент. Замена таких «надутых» компонентов на новые будет преждевременной, если предварительно не локализовать проблему приведшую к их вздутию. В противном случае, ну замените вы их на новые, а они через некоторое время опять станут «беременными» )), и все сначала. Как показывает практика, причина такой неисправности кроется в не корректной стабилизации питающего напряжения либо его отсутствие вообще. Посему, пока не обнаружите отчего это происходит, делать замену вздутых на новые не нужно.

Еще раз хочу предостеречь всех, у кого нет определенного опыта в ремонте таких аппаратов — не беритесь делать ремонт блока питания компьютера своими руками пошагово. Это может вам обойтись намного дороже, чем отдать блок питания в ремонт специалистам. Помимо всего прочего, для ремонта такой техники необходимо профессиональное оборудование.

Управляющие транзисторы и мощные ключи

Любой установленный в схеме транзистор является полупроводниковым прибором, который также подвержен экстремальным процессам происходящих в нем. Поэтому, ремонт блока питания компьютера своими руками пошагово и последовательно. После конденсаторов подлежат проверке и эти полупроводники. Чтобы определить состояние транзистора, необходимо проверить мультиметром переходы база-коллектор и база эмиттер в обеих направлениях. Делается это с целью выявления обрыва или короткого замыкания на этих переходах.

Тоже самое следует проделать на переходах коллектор-эмиттер, при этом желательно отпаять один конец резистора установленного в цепи эмиттера. После этого уже делается заключение о пригодности этого элемента. Затем переходим к проверке выпрямительных диодов, проверяем их таким же методом как и транзисторы — диод в одну сторону показывает высокое сопротивление, а в другую сторону ничего не показывает, то-есть переход закрыт.

Модернизация блока питания

Что может дать усовершенствование компьютерного источника питания? Под модернизацией подразумевается некоторая переделка устройства, в частности замена определенных электронных компонентов на более качественные для повышения надежности схемы. В понятие небольшой переделки входит именно замена установленных в силовом тракте конденсаторов на фирменные емкости с большим значением номинального напряжения. Почему именно фирменные? Потому, что среди импортных можно подобрать размеры соответствующие месту монтажа на плате, к том уже с большим напряжением, чем у оригинала.

Внимание! Замена конденсатора связана с правильной его установкой на плато. Поэтому обратите внимание на полосу отрицательного вывода. Она широкая вертикальная и светлая. Так вот новый прибор необходимо установить точно в таком же положении, чтобы полоса попала на старое место установки.

Подводим итоги:

Теперь когда все подозрительные и явно вышедшие из строя элементы вы поменяли на исправные, то БП без проблем должен включится. Один из основных показателей работоспособности аппарата — это старт и стабильная работа вентилятора, отсутствие явного перегрева деталей на холостом ходу. Существует другой метод проверки готовности блока к работе, более профессиональный. Этот метод заключается в тестировании всех электрических параметров установленных в схеме радио-элементов. На контактах в соединительных разъемах величина напряжений должна соответствовать 12v и 5v.

Из выше изложенного следует: ремонт компьютерного блока питания не такой уж и простой как может показаться изначально. Однако, как говорилось выше, если имеются хотя бы начальные знания в радиоэлектронике, то можно взяться и за самостоятельный ремонт. При этом желательно иметь под рукой принципиальную схему прибора и хорошенько ее изучить.

Блок питания ПК – схема, ремонт своими руками

Блок питания в компьютере (БП) – это самостоятельное импульсное электронное устройство, предназначенное для преобразования напряжения переменного тока в ряд постоянных напряжений (+3,3 / +5 / +12 и -12) для питания материнской платы, видеокарты, винчестера и других блоков компьютера.

Прежде, чем приступать к ремонту блока питания компьютера необходимо убедиться в его неисправности, так как невозможность запуска компьютера может быть обусловлена другими причинами.

Фотография внешнего вида классического блока питания АТХ стационарного компьютера (десктопа).

Где находится БП в системном блоке и как его разобрать

Чтобы получить доступ к БП компьютера необходимо сначала снять с системного блока левую боковую стенку, открутив два винта на задней стенке со стороны расположения разъемов.

Для извлечения блока питания из корпуса системного блока необходимо открутить четыре винта, помеченных на фото. Для проведения внешнего осмотра БП достаточно отсоединить от блоков компьютера только те провода, которые мешают для установки БП на край корпуса системного блока.

Расположив блок питания на углу системного блока, нужно открутить четыре винта, находящиеся сверху, на фото розового цвета. Часто один или два винта спрятаны под наклейкой, и чтобы найти винт, ее нужно отклеить или проткнуть жалом отвертки. По бокам тоже бывают наклейки, мешающие снять крышку, их нужно прорезать по линии сопряжения деталей корпуса БП.

После того, как крышка с БП снята обязательно удаляется пылесосом вся пыль. Она является одной из главных причин отказа радиодеталей, так как, покрывая их толстым слоем, снижает теплоотдачу от деталей, они перегреваются и, работая в тяжелых условиях, быстрее выходят из строя.

Для надежной работы компьютера удалять пыль из системного блока и БП, а также проверять работу кулеров необходимо не реже одного раза в год.

Структурная схема БП компьютера АТХ

Блок питания компьютера является довольно сложным электронным устройством и для его ремонта требуются глубокие знания по радиотехнике и наличие дорогостоящих приборов, но, тем не менее, 80% отказов можно устранить самостоятельно, владея навыками пайки, работы с отверткой и зная структурную схему источника питания.

Практически все БП компьютеров изготовлены по ниже приведенной структурной схеме. Электронные компоненты на схеме я привел только те, которые чаще всего выходят из строя, и доступны для самостоятельной замены непрофессионалам. При ремонте блока питания АТХ обязательно понадобится цветовая маркировка выходящих из него проводов.

Питающее напряжение с помощью сетевого шнура подается через разъемное соединение на плату блока питания. Первым элементом защиты является предохранитель Пр1 обычно стоит на 5 А. Но в зависимости от мощности источника может быть и другого номинала. Конденсаторы С1-С4 и дроссель L1 образуют фильтр, который служит для подавления синфазных и дифференциальных помех, которые возникают в результате работы самого блока питания и могут приходить из сети.

Сетевые фильтры, собранные по такой схеме, устанавливают в обязательном порядке во всех изделиях, в которых блок питания выполнен без силового трансформатора, в телевизорах, видеомагнитофонах, принтерах, сканерах и др. Максимальная эффективность работы фильтра возможна только при подключении к сети с заземляющим проводом. К сожалению, в дешевых китайских источниках питания компьютеров элементы фильтра зачастую отсутствуют.

Вот тому пример, конденсаторы не установлены, а вместо дросселя запаяны перемычки. Если Вы будете ремонтировать блок питания и обнаружите отсутствие элементов фильтра, то желательно их установить.

Вот фотография качественного БП компьютера, как видно, на плате установлены фильтрующие конденсаторы и помехоподавляющий дроссель.

Для защиты схемы БП от скачков питающего напряжения в дорогих моделях устанавливаются варисторы (Z1-Z3), на фото с правой стороны синего цвета. Принцип работы их простой. При нормальном напряжении в сети, сопротивление варистора очень большое и не влияет на работу схемы. В случае повышении напряжения в сети выше допустимого уровня, сопротивление варистора резко уменьшается, что ведет к перегоранию предохранителя, а не к выходу из строя дорогостоящей электроники.

Чтобы отремонтировать отказавший блок по причине перенапряжения, достаточно будет просто заменить варистор и предохранитель. Если варистора под руками нет, то можно обойтись только заменой предохранителя, компьютер будет работать нормально. Но при первой возможности, чтобы не рисковать, нужно в плату установить варистор.

В некоторых моделях блоков питания предусмотрена возможность переключения для работы при напряжении питающей сети 115 В, в этом случае контакты переключателя SW1 должны быть замкнуты.

Для плавного заряда электролитических конденсаторов С5-С6, включенных сразу после выпрямительного моста VD1-VD4, иногда устанавливают термистор RT с отрицательным ТКС. В холодном состоянии сопротивление термистора составляет единицы Ом, при прохождении через него тока, термистор разогревается, и сопротивление его уменьшается в 20-50 раз.

Для возможности включения компьютера дистанционно, в блоке питания имеется самостоятельный, дополнительный маломощный источник питания, который всегда включен, даже если компьютер выключен, но электрическая вилка не вынута из розетки. Он формирует напряжение +5 B_SB и построен по схеме трансформаторного автоколебательного блокинг-генератора на одном транзисторе, запитанного от выпрямленного напряжения диодами VD1-VD4. Это один из самых ненадежных узлов блока питания и ремонтировать его сложно.

Необходимые для работы материнской платы и других устройств системного блока напряжения при выходе из блока выработки напряжений фильтруются от помех дросселями и электролитическими конденсаторами и затем посредством проводов с разъемами подаются к источникам потребления. Кулер, который охлаждает сам блок питания, запитывается, в старых моделях БП от напряжения минус 12 В, в современных от напряжения +12 В.

Ремонт БП компьютера АТХ

Внимание! Во избежание вывода компьютера из строя расстыковка и подключение разъемов блока питания и других узлов внутри системного блока необходимо выполнять только после полного отключения компьютера от питающей сети (вынуть вилку из розетки или выключить выключатель в «Пилоте»).

Первое, что необходимо сделать, это проверить наличие напряжения в розетке и исправность удлинителя типа «Пилот» по свечению клавиши его выключателя. Далее нужно проверить, что шнур питания компьютера надежно вставлен в «Пилот» и системный блок и включен выключатель (при его наличии) на задней стенке системного блока.

Как найти неисправность БП нажимая кнопку «Пуск»

Если питание на компьютер подается, то на следующем шаге нужно г

Блок питания своими руками ⋆ diodov.net

Простой и надежный блок питания своими руками при нынешнем уровне развития элементной базы радиоэлектронных компонентов можно сделать очень быстро и легко. При этом не потребуются знания электроники и электротехники на высоком уровне. Вскоре вы в этом убедитесь.

Изготовление своего первого источника питания довольно интересное и запоминающееся событие. Поэтому важным критерием здесь является простота схемы, чтобы после сборки она сразу заработала без каких-либо дополнительных настроек и подстроек.

Следует заметить, что практически каждое электронное, электрическое устройство или прибор нуждаются в питании. Отличие состоит лишь в основных параметрах – величина напряжения и тока, произведение которых дают мощность.

Изготовить блок питания своими руками – это очень хороший первый опыт для начинающих электронщиков, поскольку позволяет прочувствовать (не на себе) различные величины токов, протекающих в устройствах.

Современный рынок источников питания разделен на две категории: трансформаторные и безтрансформаторные. Первые достаточно просты в изготовлении для начинающих радиолюбителей. Второе неоспоримое преимущество – это сравнительно низкий уровень электромагнитных излучений, а соответственно и помех. Существенным недостатком по современным меркам является значительная масса и габариты, вызванные наличием трансформатором – самого тяжелого и громоздкого элемента в схеме.

Безтрансформаторные блоки питания лишены последнего недостатка ввиду отсутствия трансформатора. Вернее он там есть, но не в классическом представлении, а работает с напряжением высокой частоты, что позволяет снизить число витков и размеры магнитопровода. В результате снижаются вцелом габариты трансформатора. Высокая частота формируется полупроводниковыми ключами, в процессе из включения и выключения по заданному алгоритму. Вследствие этого возникают сильные электромагнитные помехи, поэтому такие источник подлежат обязательному экранированию.

Мы будем собирать трансформаторный блок питания, который никогда не утратит своей актуальности, поскольку и поныне используется в аудиотехнике высокого класса, благодаря минимальному уровню создаваемых помех, что очень важно для получения качественного звука.

Устройство и принцип работы блока питания

Стремление получить как можно компактнее готовое устройство примело к появлению различных микросхем, внутри которых находятся сотни, тысячи и миллионы отдельных электронных элементов. Поэтому практически любой электронный прибор содержит микросхему, стандартная величина питания которой 3,3 В или 5 В. Вспомогательные элементы могут питаться от 9 В до 12 В постоянного тока. Однако мы хорошо знаем, что розетке переменное напряжение 220 В частотою 50 Гц. Если его подать непосредственно на микросхему или какой-либо другой низковольтный элемент, то они мгновенно выйдут из строя.

Отсюда становится понятным, что главная задача сетевого блока питания (БП) состоит в снижении величины напряжения до приемлемого уровня, а также преобразование (выпрямление) его из переменного в постоянное. Кроме того, его уровень должен оставаться постоянным независимо от колебаний входного (в розетке). Иначе устройство будет работать нестабильно. Следовательно, еще одна важнейшая функция БП – это стабилизация уровня напряжения.

В целом структура блока питания состоит из трансформатора, выпрямителя, фильтра и стабилизатора.

Помимо основных узлов еще используется ряд вспомогательных, например, индикаторные светодиоды, которые сигнализируют о наличие подведенного напряжения. А если в БП предусмотрена его регулировка, то естественно там будет вольтметр, а возможно еще и амперметр.

Трансформатор

В данной схеме трансформатор применяется для снижения напряжения в розетке 220 В до необходимого уровня, чаще всего 5 В, 9 В, 12 В или 15 В. При этом еще осуществляется гальваническая развязка высоковольтных с низковольтными цепями. Поэтому при любых внештатных ситуациях напряжение на электронном устройстве не превысит значение величины вторичной обмотки. Также гальваническая развязка повышает безопасность обслуживающего персонала. В случае прикосновения к прибору, человек не попадет под высокий потенциал 220 В.

Конструкция трансформатора довольно проста. Он состоит из сердечника, выполняющего функцию магнитопровода, который изготовляется из тонких, хорошо проводящих магнитный поток, пластин, разделенных диэлектриком, в качестве которого служит нетокопроводящий лак.

На стержень сердечника намотаны минимум две обмотки. Одна первичная (еще ее называют сетевая) – на нее подается 220 В, а вторая – вторичная – с нее снимается пониженное напряжение.

Принцип работы трансформатора заключается в следующем. Если к сетевой обмотке приложить напряжение, то, поскольку она замкнута, в ней начнет протекать переменный ток. Вокруг этого тока возникает переменное магнитное поле, которое собирается в сердечнике и протекает по нему в виде магнитного потока. Поскольку на сердечнике расположена еще одна обмотка – вторичная, то поде действием переменного магнитного потока в ней навидится электродвижущая сила (ЭДС). При замыкании этой обмотки на нагрузку, через нее будет протекать переменный ток.

Радиолюбители в своей практике чаще всего применяют два вида трансформаторов, которые главным образом отличатся типом сердечника – броневой и тороидальный. Последний удобнее в применении тем, что на него достаточно просто можно домотать нужное количество витков, тем самым получить необходимое вторичное напряжение, которое прямопропорционально зависит от количества витков.

Основными для нас являются два параметра трансформатора – напряжение и ток вторичной обмотки. Величину тока примем равной 1 А, поскольку на такое же значение мы возьмем стабилитроны. О чем немного далее.

Диодный мост

Продолжаем собирать блок питания своими руками. И следующим порядковым элементом в схеме установлен диодный мост, он же полупроводниковый или диодный выпрямитель. Предназначен он для преобразования переменного напряжения вторичной обмотки трансформатора в постоянное, а точнее говоря, в выпрямленное пульсирующее. Отсюда и происходит название «выпрямитель».

Существуют различные схемы выпрямления, однако наибольшее применение получила мостовая схема. Принцип работы ее заключается в следующем. В первый полупериод переменного напряжения ток протекает по пути через диод VD1, резистор R1 и светодиод VD5. Далее ток возвращается к обмотке через открытый VD2.

К диодам VD3 и VD4 в этот момент приложено обратное напряжение, поэтому они заперты и ток через них не протекает (на самом деле протекает только в момент коммутации, но этим можно пренебречь).

В следующий полупериод, когда ток во вторичной обмотке изменит свое направление, произойдет все наоборот: VD1 и VD2 закроются, а VD3 и VD4 откроются. При этом направление протекания тока через резистор R1 и светодиод VD5 останется прежним.

Диодный мост можно спаять из четырех диодов, соединенных согласно схемы, приведенной выше. А можно купить готовый. Они бывают горизонтального и вертикального исполнения в разных корпусах. Но в любом случае имеют четыре вывода. На два вывода подается переменное напряжение, они обозначаются знаком «~», оба одинаковой длины и самые короткие.

С двух других выводов снимается выпрямленное напряжение. Обозначаются они «+» и «-». Вывод «+» имеет наибольшую длину среди остальных. А на некоторых корпусах возле него делается скос.

Конденсаторный фильтр

После диодного моста напряжение имеет пульсирующий характер и еще непригодно для питания микросхем и тем более микроконтроллеров, которые очень чувствительны к различного рода перепадам напряжения. Поэтому его необходимо сгладить. Для этого можно применяется дроссель либо конденсатор. В рассматриваемой схеме достаточно использовать конденсатор. Однако он должен иметь большую емкость, поэтому следует применять электролитический конденсатор. Такие конденсаторы зачастую имеют полярность, поэтому ее необходимо соблюдать при подключении в схему.

Отрицательный выв

Какой блок питания установлен на моем ПК? Знайте свои характеристики блока питания

(* Этот пост может содержать партнерские ссылки, что означает, что я могу получить небольшую комиссию, если вы решите совершить покупку по ссылкам, которые я предоставляю (без дополнительных затрат для вас). Спасибо за поддержку работы, которую я вложил в этот сайт!)

Вы хотите знать, какой блок питания установлен в вашем ПК? Если ваш ответ утвердительный, продолжайте читать, так как здесь я расскажу вам о том, как вы можете узнать подробности о вашем блоке питания, который в настоящее время установлен на вашем компьютере.Всегда полезно знать о компонентах вашего компьютера, особенно о блоке питания, потому что это один из самых важных компонентов компьютера, но его важность часто игнорируется большинством пользователей. Если вы создали свой собственный ПК самостоятельно, то вы уже знаете обо всех своих компонентах, включая блок питания, но если вы не настолько разбираетесь в технологиях и приобрели готовый ПК или каким-то образом приобрели старый ПК откуда-то, возможно, вы не знаете о своем блоке питания.Итак, чтобы помочь вам, здесь я собираюсь рассказать вам о способах, которыми вы можете узнать о характеристиках вашего источника питания.

Зачем знать про свой БП?

Теперь возникает вопрос, почему вы должны знать о своем блоке питания? Что ж, ответ на этот вопрос заключается в том, что если вы хотите обновить свою видеокарту или хотите или добавить видеокарту или любой другой компонент, вам следует знать о требованиях к питанию вашего ПК. Это связано с тем, что новый компонент создаст дополнительную нагрузку на ваш блок питания, и если требования к мощности вашего компьютера превысят мощность блока питания, это приведет к перегрузке вашего блока питания и может вызвать его выход из строя или сгореть, а также может привести к повреждению ваши внутренние компоненты.Кроме того, если вы хотите обновить свой блок питания, вы должны знать спецификации своего текущего блока питания, чтобы вы могли принять правильное решение при выборе лучшего и более мощного блока питания. К сожалению, невозможно узнать спецификации вашего блока питания с помощью какого-либо программного обеспечения для обнаружения оборудования, поскольку блок питания не имеет интерфейса связи с материнской платой, поскольку его единственная задача — подавать питание на компоненты.

Примечание: Существует несколько высокопроизводительных блоков питания, особенно от Corsair, которые позволяют контролировать и управлять скоростью вращения вентилятора, температурой и выходной мощностью через свое программное обеспечение, например.грамм. Блоки питания Corsair RM / AX / HX Series. Они включают в себя специальный кабель / разъем, который подключается через USB-разъем материнской платы, используя специальный концентратор, например Corsair Link Hub.

Обязательно к прочтению: Лучшие инструменты калькулятора блоков питания для расчета мощности вашего ПК

Как узнать о своем блоке питания

Вот способы, которыми вы можете узнать подробности вашего источника питания или его характеристики.

Физический метод

[открыв корпус ПК]

Самый предпочтительный способ узнать о вашем блоке питания или блоке питания — открыть боковую панель корпуса компьютера и найти наклейку или этикетку на ней, которая содержит важную информацию о вашем блоке питания, включая название блока питания / номер модели, Детали мощности / мощности, напряжения и тока.Наклейка / этикетка присутствует на каждом блоке питания, и ее можно увидеть сбоку или сверху, в зависимости от производителя. Если вы знаете, как читать этикетку и что на самом деле означает вся техническая информация на ней, тогда это хорошо, но если вы не знаете, то ниже я расскажу вам все об этом.

Как читать этикетку / наклейку блока питания

На каждой этикетке блока питания вы найдете следующую информацию:

Название / модель блока питания — На этикетке вы найдете марку и название блока питания, а также номер его модели.Вы также можете найти общую мощность блока питания, которая обычно печатается огромным шрифтом, а также рейтинг сертификации 80 Plus (если он есть). Ниже представлен блок питания Corsair RM550 на 550 Вт.

Входное напряжение — Это напряжение переменного тока, при котором работает блок питания, и вы должны подавать его. Для США, Канады и большинства стран Южной Америки оно составляет около 110–127 В, а для Великобритании, Европы, Азии, Африки, Австралии и т. Д. — 200–240 В.Некоторые источники питания могут работать в широком диапазоне напряжений, например от 110 В до 240 В, поскольку они имеют механизм автоматического переключения для определения входного напряжения и могут соответственно переключаться. Однако у других может быть физический переключатель, который позволяет вам выбрать подходящее напряжение в зависимости от напряжения, подаваемого в вашем регионе или стране.

Выход постоянного тока — Это выходное напряжение, обеспечиваемое вашим источником питания. Стандартные выходные напряжения, обеспечиваемые типичным блоком питания ATX, составляют + 3,3 В, + 5,5 В, + 12 В и + 5 В SB.Они также известны как рельсы, то есть шина 3,3 В, шина 5 В и шина 12 В. Некоторые блоки питания поставляются с несколькими шинами 12 В, такими как Dual 12V Rail, Quad 12V Rail, в зависимости от производителя или модели блока питания. Здесь я не включил -12V Rail, потому что он больше не используется и присутствует только для некоторой устаревшей поддержки. Шина + 5VSB (резервное напряжение) всегда включена и используется для питания мыши, клавиатуры, памяти, локальной сети и памяти BIOS, когда ПК находится в режиме ожидания для поддержки «функций включения питания». Он также обеспечивает небольшое количество энергии для BIOS и материнской платы, даже когда компьютер выключен (но включен в сеть), и используется для запуска блока питания или компьютера, когда вы нажимаете кнопку питания ПК.Ниже вы можете увидеть один источник питания 12 В и двойной источник питания 12 В.

Одиночная шина 12 В в блоке питания

Двойные шины 12 В в блоке питания

Макс.нагрузка (A) — Под каждым уровнем напряжения или шиной вы можете увидеть максимальное количество тока (в амперах), которое может обеспечить каждая шина. Например, если для шины 12 В указана сила тока 35 А, то она не может обеспечить ток более 35 А в совокупности для различных устройств или компонентов, имеющихся на вашем ПК.Если вы его перегрузите, это может привести к отказу блока питания или выключению компьютера.

Максимальная мощность (комбинированная) — Это максимальная мощность для одной направляющей или для комбинированных направляющих. Мощность для шины + 3,3 В и шины 5 В объединяется и рассчитывается вместе, а мощность для шины 12 В или рельсов (в случае нескольких шин) указывается отдельно. Мощность рассчитывается в ваттах и ​​является произведением напряжения и тока. Итак, формула мощности следующая:

Мощность (Вт) = Напряжение (В) X Ток (I)

Total Power — Общая мощность блока питания, выраженная в ваттах.Некоторые производители рассчитывают общую мощность, складывая мощность всех шин, в то время как другие заявляют это на основе общей комбинированной мощности, присутствующей только на шинах +12 В, потому что это самая важная шина блока питания и используется для питания 80%. до 90% компонентов вашего компьютера, включая процессор, видеокарту, вентиляторы корпуса, жесткие диски и т. д.

Узнайте о кабелях и разъемах

Открыв корпус, вы также можете проверить количество и типы разъемов и кабелей, имеющихся в вашем блоке питания.Ниже приведены наиболее распространенные типы кабелей, которые обычно встречаются в блоках питания, соответствующих требованиям ATX 12V 2.2+.

Как узнать исчерпывающую информацию

Узнав название и номер модели вашего блока питания, вы можете перейти на сайт производителя, чтобы узнать о нем более подробную информацию. Вы также можете скачать руководство по блоку питания или спецификацию оттуда. Например, если у вас блок питания Corsair VS550, вы можете найти эту модель в Google или напрямую перейти на веб-сайт производителя, чтобы узнать все подробности.

См. Руководство / поиск в Интернете

[Для предварительно собранных ПК]

Если у вас есть предварительно собранный ПК, вы можете обратиться к руководству по его техническим характеристикам, которые могут рассказать об установленном блоке питания. Если у вас нет руководства, вы также можете обратиться к веб-сайту производителя; найдите там номер модели своего ПК и ознакомьтесь со спецификациями блока питания, указанными там, для номера модели вашего ПК. Эта информация может быть не всегда точной, потому что некоторые производители могут заменить блок питания на свои более новые варианты той же модели ПК, поэтому всегда лучше открывать боковую панель корпуса ПК, чтобы проверить модель и характеристики блока питания.

См. Также:

Есть вопросы?

Если у вас есть какие-либо вопросы относительно имеющегося у вас блока питания (БП) или его технических характеристик, вы можете задать мне вопрос здесь, оставив комментарий ниже.

Как собрать собственный блок питания »maxEmbedded

Этот пост написал Вишвам, помешанный на электронике и отличный гитарист. Он является одним из основных членов roboVITics. Не забудьте поделиться своими взглядами после прочтения!

Источник питания — это устройство, которое подает точное напряжение на другое устройство в соответствии с его потребностями.

Сегодня на рынке доступно множество источников питания, таких как регулируемые, нерегулируемые, регулируемые и т. Д., И решение о выборе правильного полностью зависит от того, какое устройство вы пытаетесь использовать с источником питания. Источники питания, часто называемые адаптерами питания или просто адаптерами, доступны с различным напряжением и разной токовой нагрузкой, что является не чем иным, как максимальной мощностью источника питания для подачи тока на нагрузку (нагрузка — это устройство, которое вы пытаетесь подать. мощность к).

Можно спросить себя, «Зачем я делаю это сам, когда он доступен на рынке?» Что ж, ответ — даже если вы купите его, он обязательно перестанет работать через некоторое время (и поверьте мне, блоки питания перестают работать без каких-либо предварительных указаний, однажды они будут работать, на следующий день они просто перестанут работать. прекратить работу!). Итак, если вы построите его самостоятельно, вы всегда будете знать, как его отремонтировать, поскольку вы будете точно знать, какой компонент / часть схемы что делает. А в дальнейшем, зная, как построить такой, вы сможете отремонтировать уже купленные, не тратя деньги на новый.

  1. Медные провода с допустимым током не менее 1 А для сети переменного тока
  2. Понижающий трансформатор
  3. 1N4007 Кремнеземные диоды (× 4)
  4. Конденсатор 1000 мкФ
  5. Конденсатор 10 мкФ
  6. Регулятор напряжения (78XX) (XX — требуемое выходное напряжение. Я объясню эту концепцию позже)
  7. Паяльник
  8. Припой
  9. Печатная плата общего назначения
  10. Гнездо адаптера (для подачи выходного напряжения на устройство с определенной розеткой)
  11. 2-контактный штекер

Дополнительно

  1. Светодиод (для индикации)
  2. Резистор (значение поясняется позже)
  3. Радиатор для регулятора напряжения (для более высоких выходов тока)
  4. Переключатель SPST

Трансформаторы

Трансформаторы — это устройства, которые понижают относительно более высокое входное напряжение переменного тока до более низкого выходного напряжения переменного тока.Найти входные и выходные клеммы трансформатора очень сложно. Обратитесь к следующей иллюстрации или в Интернете, чтобы понять, где что находится.

Клеммы ввода-вывода трансформатора

В основном трансформатор имеет две стороны, где заканчивается обмотка катушки внутри трансформатора. Оба конца имеют по два провода каждый (если вы не используете трансформатор с центральным отводом для двухполупериодного выпрямления). На трансформаторе одна сторона будет иметь три клеммы, а другая — две.Один с тремя выводами — это пониженный выход трансформатора, а другой с двумя выводами — это то место, где должно подаваться входное напряжение.

Регуляторы напряжения

Стабилизаторы напряжения серии 78ХХ — это регуляторы, широко используемые во всем мире. XX обозначает напряжение, которое регулятор будет регулировать как выходное, исходя из входного напряжения. Например, 7805 будет регулировать напряжение до 5 В. Точно так же 7812 будет регулировать напряжение до 12 В.Обращаясь к этим регуляторам напряжения, следует помнить, что им необходимо как минимум на 2 вольта больше, чем их выходное напряжение на входе. Например, для 7805 потребуется не менее 7 В, а для 7812 — не менее 14 В. Это избыточное напряжение, которое необходимо подавать на регуляторы напряжения, называется Dropout Voltage .

ПРИМЕЧАНИЕ: Входной вывод обозначен как «1», земля — ​​как «2», а выходной — как «3».

Схема регулятора напряжения

Диодный мост

Мостовой выпрямитель состоит из четырех обычных диодов, с помощью которых мы можем преобразовать переменное напряжение в постоянное.Было установлено, что это лучшая модель для преобразования переменного тока в постоянный для двухполупериодных и полуволновых выпрямителей. Вы можете использовать любую модель, какую захотите, но я использую ее ради высокой эффективности (если вы используете модель двухполупериодного выпрямителя, вам понадобится трансформатор с центральным отводом, и вы сможете использовать только половину преобразованное напряжение).

Следует отметить, что диоды теряют около 0,7 В каждый при работе в прямом смещении. Таким образом, при выпрямлении моста мы упадем на 1,4 В, потому что в один момент два диода проводят ток, и каждый из них упадет на 0.7В. В случае двухполупериодного выпрямителя будет потеряно только 0,7 В.

Так как это падение влияет на нас? Что ж, это пригодится при выборе правильного понижающего напряжения для трансформатора. Видите ли, нашему регулятору напряжения нужно на 2 вольта больше, чем его выходное напряжение. Для пояснения предположим, что мы делаем адаптер на 12 В. Таким образом, для регулятора напряжения требуется как минимум 14 вольт на входе. Таким образом, выход диодов (который идет в регулятор напряжения) должен быть больше или равен 14 вольт.Теперь о входном напряжении диодов. В целом они упадут на 1,4 Вольт, поэтому входное напряжение на них должно быть больше или равно 14,0 + 1,4 = 15,4 Вольт. Поэтому я бы, вероятно, использовал для этого понижающий трансформатор с 220 до 18 вольт.

Таким образом, понижающее напряжение трансформатора должно быть как минимум на 3,4 В выше желаемого выходного напряжения источника питания.

Схема и изображение диода

Цепь фильтра

Мы фильтруем как вход, так и выход регулятора напряжения, чтобы получить максимально плавное напряжение постоянного тока от нашего адаптера, для которого мы используем конденсаторы.Конденсаторы — это простейшие фильтры тока, они пропускают переменный ток и блокируют постоянный ток, поэтому используются параллельно с выходом. Кроме того, если есть пульсация на входе или выходе, конденсатор выпрямляет его, разряжая накопленный в нем заряд.

Схема и изображение конденсатора

Вот принципиальная схема блока питания:

Принципиальная схема

Как это работает

Сеть переменного тока подается на трансформатор, который понижает 230 В до желаемого напряжения.Мостовой выпрямитель следует за трансформатором, преобразуя переменное напряжение в выходное напряжение постоянного тока и через фильтрующий конденсатор подает его непосредственно на вход (контакт 1) регулятора напряжения. Общий вывод (вывод 2) регулятора напряжения заземлен. Выход (вывод 3) регулятора напряжения сначала фильтруется конденсатором, а затем снимается выходной сигнал.

Сделайте схему на печатной плате общего назначения и используйте 2-контактный штекер (5A) для подключения входа трансформатора к сети переменного тока через изолированные медные провода.

Если вы хотите включить устройство, купленное на рынке, вам необходимо припаять выход блока питания к разъему адаптера. Этот разъем адаптера бывает разных форм и размеров и полностью зависит от вашего устройства. Я включил изображение наиболее распространенного типа переходного разъема.

Очень распространенный тип переходного разъема

Если вы хотите запитать самодельную схему или устройство, то вы, вероятно, пропустите выходные провода источника питания напрямую в вашу схему.

Важно отметить, что вам нужно будет соблюдать полярность при использовании этого источника питания, так как большинство устройств, которые вы включаете, будут работать только с прямым смещением и не будут иметь встроенного выпрямителя для исправления неправильной полярности. .

Порты подключения переходного разъема

Практически всем устройствам потребуется положительный контакт на наконечнике и заземление на корпусе, за исключением некоторых, например, в музыкальной индустрии, почти все устройства нуждаются в заземлении на наконечнике и плюсе на корпусе.

Вы можете добавить последовательно светодиод с токоограничивающим резистором для индикации работы источника питания. Значение сопротивления рассчитывается следующим образом:

 R = (Vout - 3) / 0,02 Ом 

Где, R — значение последовательного сопротивления, а Vout — выходное напряжение регулятора напряжения (а также источника питания).

Схема и изображение резистора

ПРИМЕЧАНИЕ: Значение резистора не обязательно должно быть точно таким, как рассчитано по этой формуле, оно может быть любым, близким к расчетному значению, предпочтительно больше.

Схема и изображение светодиода

В дополнение к светодиоду вы также можете добавить переключатель для управления режимом включения / выключения источника питания.

Также можно использовать радиатор, который представляет собой металлический проводник тепла, прикрепленный к регулятору напряжения с помощью болта. Используется в случае, если нужны сильноточные выходы от блока питания и регулятор напряжения нагревается.

Радиатор

Здесь я сделал блок питания на 12 В для питания моей платы микроконтроллера.Он работает отлично и стоит где-то около 100 баксов (индийских рупий).

ПРИМЕЧАНИЕ. Для всех плат микроконтроллеров потребуется плюс на наконечнике и заземление на втулке.

Это адаптер на 12 В, который я сделал

  1. Перед тем, как паять детали на печатную плату, спланируйте компоновку вашей схемы на ней, это поможет сэкономить место и позволит меньше места для ошибок при пайке.
  2. Если вы новичок в схемах и пайке, я бы посоветовал вам сначала сделать эту настройку на макетной плате и проверить свои соединения, а после того, как эта схема заработает на макетной плате, перенесите эту схему на печатную плату и припаяйте.
  3. Будьте осторожны, , поскольку вы работаете напрямую с сетью переменного тока.
  4. Проверьте заранее, какое напряжение требуется устройству, которое вы пытаетесь подключить к источнику питания. Некоторые устройства можно сжечь всего парой дополнительных вольт.
  5. Стабилизаторы напряжения серии 78XX способны обеспечивать токи до 700 мА при использовании радиатора.

Вот и все. Если вам понравился этот пост, у вас есть какие-либо мнения относительно него или любые дальнейшие запросы и проекты, пожалуйста, прокомментируйте ниже.Кроме того, подпишитесь на maxEmbedded, чтобы оставаться в курсе! Ура!

Вишвам Аггарвал
[email protected]

Нравится:

Нравится Загрузка …

Связанные

Теперь, когда у меня есть компьютер, что я могу сделать?

Обновлено: 31.08.2020, Computer Hope

Часто новые пользователи компьютеров могут не знать всех возможностей своего нового компьютера или могут захотеть узнать больше о том, на что он способен.Ниже приведен список того, что может делать компьютер. Щелкните ссылку в списке для получения дополнительной информации.

Подключиться к Интернету

Интернет — одна из самых популярных вещей для доступа и использования на компьютере, и это то, что должен попробовать каждый новый пользователь.

Используйте свой текстовый процессор

Некоторые современные компьютеры оснащены текстовым процессором. Ниже приведены некоторые действия, которые можно выполнять в большинстве текстовых редакторов.

  • Напишите документ, отчет или даже книгу.
  • Помогите проверить орфографические и грамматические ошибки в вашем тексте.
  • Просмотр других документов, руководств или других файлов текстового процессора.
  • Свяжите текстовый редактор с внешним источником, например Outlook, Excel или другим источником, и создайте ярлыки.
  • Создавайте листовки, раздаточные материалы или другие страницы с графикой и изображениями.

Используйте свою электронную таблицу

Некоторые современные компьютеры также содержат программу для работы с электронными таблицами. Ниже приведены некоторые из вещей, которые вы можете делать в программе для работы с электронными таблицами.

  • Создайте список числовых значений.Например, вы можете создать электронную версию своего текущего или сберегательного счета, что позволит вам видеть общую сумму на каждом счете.
  • Создайте список статистики, например, Computer Hope хранит статистику о том, сколько пользователей посещают его страницы. Эти статистические данные можно просмотреть, чтобы увидеть увеличение или уменьшение значений.
  • Создайте список контактной информации или другой информации, которую можно сортировать и просматривать по разным столбцам.

Расширьте свои знания

Существуют тысячи программ, которые позволяют вам или вашим детям больше узнать о том или ином предмете.Ниже приведен список различных программ, чтобы дать вам представление о том, что доступно. Вы можете найти многие из этих программ в местном магазине компьютерного программного обеспечения или в интернет-магазинах компьютерного программного обеспечения.

  • Словарь, тезаурус, энциклопедия — Существуют сотни доступных версий программного обеспечения словарей, тезаурусов и энциклопедий. Вы можете использовать их для просмотра и получения дополнительных сведений обо всем или в качестве справочника для поиска информации.
  • Географическое или картографическое программное обеспечение — Несколько компаний, которые создают сложные картографические программы, которые позволяют пользователям больше узнавать о мире или конкретном месте, искать направления, находить местный магазин и т. Д.См. Нашу страницу с информацией о картах, где вы найдете список бесплатных сетевых картографических сервисов.
  • Языковое программное обеспечение — Доступно множество программ, которые помогают пользователям изучать разные языки и даже переводить текст с одного языка на другой.

Играть в игры

Игры — еще одна популярная вещь, которую можно делать с вашим компьютером, независимо от вашего возраста. Ниже приведен список различных игр для разных возрастных групп.

  • Детские обучающие игры — Существуют сотни игр для детей младшего возраста (12 лет и младше), в которые не только приятно играть, но часто и познавательно.
  • Игры для подростков и старше — Безусловно, самые популярные игры, в которые часто играют ради развлечения.
  • Обучающие игры — Многочисленные обучающие игры для всех людей и всех возрастных групп. Например, доступно множество симуляторов полета, которые помогают пользователям научиться летать и в то же время доставляют удовольствие.
  • Онлайн-игры — Пользователи, имеющие доступ к Интернету, также имеют доступ к миллионам сайтов бесплатных онлайн-игр, таких как MSN games.На сайтах онлайн-игр представлены сотни игр, в которые вы можете играть против других пользователей Интернета со всего мира.

Слушайте музыку, создавайте музыку или музыкальные компакт-диски

файлов MP3 и возросшая популярность легального и нелегального обмена музыкой делают компьютеры отличным способом получить новую музыку и послушать любимых исполнителей. Ниже приводится общая информация о том, как слушать музыку на компьютере.

Установить звуковой проигрыватель

Чтобы слушать музыку на компьютере, вам понадобится плеер.Новые версии Windows поставляются с проигрывателем Windows Media и несколькими программами, такими как Winamp, которые вы можете бесплатно загружать из Интернета и слушать музыкальные файлы.

Скачать или скопировать звуковые файлы

Каждая песня, а иногда и целый компакт-диск, содержится в звуковом файле, часто в файле MP3. Эти файлы можно загрузить с различных сайтов в Интернете за небольшую плату или, если они являются общедоступными, бесплатно. Имейте в виду, что если песня не является общественным достоянием (что-то, что вы не купили бы в магазине), загрузка песни бесплатно считается незаконной, хотя многие сайты предоставляют такую ​​возможность.

Вы также можете копировать песни с уже имеющихся компакт-дисков и создавать файлы MP3. Бесплатная и отличная программа, которую мы предлагаем для создания песен с вашего компакт-диска, — это CDex. Другой вариант — использовать Windows Media Player для копирования аудио компакт-диска.

После того, как песни скопированы на ваш компьютер, вы можете слушать их в плеере в любое время. Наличие песен на компьютере означает, что вам никогда не придется вставлять компакт-диск и вы можете иметь тысячи песен вместо нескольких.

Интернет-радио

Пользователи с доступом в Интернет могут также слушать миллионы онлайн-радиостанций.Оба звуковых проигрывателя, упомянутые выше, и большинство новых проигрывателей поддерживают возможность прослушивания потокового контента.

Просмотр изображений, сканирование изображений, импорт изображений и создание изображений

Компьютеры способны хранить миллиарды изображений и могут иметь доступ практически к любому изображению, которое только можно вообразить. Вы также можете перенести изображения на компьютер с цифровой камеры, сканеров или с помощью других компьютерных периферийных устройств.

Переместив изображения на компьютер, вы можете изменить в них практически все, отредактировав их в редакторе изображений.Примерами являются улучшение внешнего вида изображения, обрезка или копирование элементов изображения. Закончив редактирование, вы можете переместить изображения в другую программу и создать персональные слайд-шоу или записать компакт-диск с изображениями.

Смотрите видео, создавайте фильмы или смотрите телевизор

Теперь пользователи могут смотреть короткие видеоклипы и фильмы на своих компьютерах и создавать их. Ниже приведены некоторые из различных методов просмотра и создания видео и фильмов.

DVD фильмы

Многие современные компьютеры оснащены DVD-приводом, что означает, что вы можете смотреть фильмы в формате DVD на своем компьютере.Если у вас нет DVD-плеера для телевизора, компьютер можно подключить к телевизору для просмотра DVD.

Короткие видеоролики

В Интернете доступны миллионы коротких видеороликов, которые включены в программное обеспечение. Это видеоролики продолжительностью не более 10 минут, которые часто представляют собой домашние видеоролики или видеоролики, сопровождающие программное обеспечение.

Создание фильмов

Сегодня существует множество программных продуктов

Создайте свой собственный маломощный ПК с тремя простыми правилами проектирования

Чтобы получить энергоэффективный компьютер, не нужен ноутбук.В 2017 году для создания энергоэффективного ПК нужно знать всего три совета.

Три вида компонентов и вариантов конфигурации позволяют создать энергоэффективную сборку.В порядке важности:

  • Высокоэффективный блок питания.
  • Компоненты с низким энергопотреблением.
  • Настройка BIOS / UEFI для уменьшения энергопотребления.

Блок питания

Источники питания не преобразуют настенный переменный ток в постоянный без больших потерь мощности.Средний блок питания преобразуется с КПД 70%, что означает 30% потерь энергии. Однако два типа блоков питания преобразуют с эффективностью более 90%: блоки питания PicoPSU и блоки питания с рейтингом 80+ Platinum (и немного лучше Titanium). При выборе сборки любой вариант представляет собой хороший выбор. Однако мощность PicoPSU составляет около 200 Вт. С другой стороны, блоки питания с рейтингом Platinum и Titanium стоят целое состояние — самый дешевый блок питания Titanium стоит около 140 долларов.

Также важно отметить, что эффективность источника питания зависит от нагрузки.Большинство расходных материалов обеспечивают максимальную эффективность при максимальной нагрузке около 50%. Поэтому перед выбором мощности блока питания следует использовать калькулятор нагрузки. Какими бы ни были ваши требования, наш список лучших блоков питания поможет вам узнать, какие у вас есть варианты.

Компоненты малой мощности

Помимо источника питания, пять других компонентов могут повлиять на количество энергии, потребляемой вашей системой: процессор, оперативная память, накопитель, материнская плата и корпус.Вы можете найти варианты с более низким энергопотреблением для каждой из этих категорий.

CPU : Самые энергоэффективные материнские платы поставляются с процессорами, припаянными к плате.К сожалению, это означает, что если либо плата, либо ЦП выйдут из строя, необходимо выбросить весь блок. Лично я предпочитаю использовать процессоры с низким энергопотреблением в сочетании с материнскими платами mini-ITX малого форм-фактора.

RAM : RAM имеет номинальное напряжение от 1.5 и 1,25 (а возможно, даже ниже). К сожалению, согласно Tom’s Hardware, это означает примерно 1 ватт в режиме ожидания и 4 Вт при максимальной нагрузке. Если вы хотите сэкономить электроэнергию, вам лучше потратить деньги на лучший блок питания.

Накопитель : твердотельные накопители (что такое SSD?) Потребляют значительно меньше энергии, чем обычные жесткие диски.Твердотельные накопители повышают производительность, потребляя при этом лишь крошечную долю мощности обычного жесткого диска с пластиной. Экономия мощности зависит от того, сколько вы пишете или читаете данных. Однако, согласно Quora, экономия энергии увеличивается.

Материнская плата : Единственная материнская плата (о которой я знаю), разработанная специально для работы с низким энергопотреблением, — это линейка MSI ECO.Материнские платы ECO могут выборочно отключать неиспользуемые компоненты. После сокращения накладных расходов плата ECO потребляет около 40% мощности материнской платы ATX.

Изображение предоставлено: MSI

Корпус / Шасси / Радиатор : В целом корпус не сэкономит много энергии или не повысит эффективность.Однако чем меньше вентиляторов в вашем корпусе, тем меньше потребляемая мощность. При полной нагрузке стандартный 90-мм вентилятор может потреблять около 5 Вт энергии. На большинстве ПК используется около трех вентиляторов. Однако существует несколько безвентиляторных корпусов, таких как HD-Plex h2.s и Эйлер Акасы. В целом полностью безвентиляторная система может снизить энергопотребление примерно на 15 Вт при нагрузке. Ознакомьтесь с нашим обзором лучших корпусов для ПК, чтобы найти корпус, который соответствует вашим потребностям. (Также используйте термопасту для охлаждения процессора.)

Графический процессор (опция): Если вы также думаете о приобретении видеокарты, не ищите ничего, кроме NVidia.Самая эффективная карта за доллар — это Nvidia GeForce 1050Ti (или 1050).

Настройки BIOS / UEFI

В BIOS (и в его замене следующего поколения, UEFI) есть ряд настроек, которые не включены по умолчанию, что может оказать заметное влияние на энергопотребление.Простое включение различных состояний питания на платах Intel (C1E и EIST) может снизить энергопотребление. Вы захотите включить их, если они есть на вашей материнской плате. Некоторые BIOS / UEFI используют разговорный язык для включения состояний с низким энергопотреблением, таких как «эко-режим» или «режим низкого энергопотребления». Включите их, если они доступны.

Производители настольных компьютеров обычно оставляют эти настройки отключенными в целях повышения производительности.Более высокие частоты, как правило, обеспечивают более быструю работу. Однако большинство пользователей не заметят разницы, и вам обязательно стоит подумать о включении функций энергосбережения.

Другой параметр BIOS / UEFI, который можно включить, — это EuP2013, который является европейским стандартом энергопотребления в режиме ожидания.Если этот параметр включен, компьютер будет потреблять не более половины ватта энергии в выключенном состоянии. Однако более современные реализации почти не потребляют питание в выключенном состоянии.

Tom’s Hardware опубликовал отличный обзор различных настроек энергосберегающего BIOS.

Пониженное и пониженное напряжение

Не путайте их.Пониженное напряжение и пониженная тактовая частота экономят энергию совершенно по-разному. Пониженное напряжение снижает количество напряжения, подаваемого на процессор. Если все сделано правильно, понижение напряжения не имеет недостатков. Выполнено неправильно, это вызывает нестабильность. К сожалению, только дорогие материнские платы высокого класса предлагают эту функцию.

С другой стороны, разгон не улучшает эффективность вашего процессора.Это только снижает его максимальную частоту. В общем, вам лучше не разгонять тактовую частоту, если для этого нет веской причины.

Сборка 1: 700-1000 $ Deluxe

В 2017 году и AMD, и Intel производят высокоэффективные высокопроизводительные процессоры.В диапазоне 65 Вт Intel предлагает Core i7-6700 за 303 доллара, а AMD Ryzen 7 1700 — за 320 долларов. Правда, не ясно, какой процессор имеет преимущество в энергопотреблении. Тем не менее, Legit Reviews провел подробный анализ энергопотребления Ryzen 7 по сравнению с Core i7-6700K, и похоже, что Ryzen выходит вперед. Также обратите внимание, что последняя серия процессоров Intel, Kaby Lake, обеспечивает почти ту же производительность, что и процессоры Skylake более старого поколения (Core i7-7700).

Однако из-за доступных вариантов материнской платы в представленной здесь сборке используется Intel (несмотря на некоторые серьезные недостатки теплового дизайна).Также обратите внимание, что процессоры Intel серий T и S потребляют от 35 до 65 Вт. В сборке более высокого уровня я бы предпочел получить плату Core i7-6700T или BGA, но их трудно найти и они не так производительны, как чуть более энергоемкий чип.

Эта конкретная сборка не сбивает с ног.Фактически, он остается относительно средним с точки зрения производительности процессора и игр. Даже в этом случае он обеспечивает высокоэффективные вычисления с минимальной разметкой. Хотя вы можете сделать эту сборку полностью безвентиляторной, хорошо иметь хотя бы некоторый поток воздуха, который в этом случае обеспечивается очень медленно вращающимся вентилятором блока питания. В кейсе есть пара вентиляторов, которые вам особо не нужны.

Nvidia 1050Ti является одним из наиболее эффективных графических процессоров, хотя эффективность в значительной степени является континуумом.Выбор наиболее эффективного игрового графического процессора зависит от ваших потребностей.

  • CPU : Intel Core i7-6700 — 293 доллара через Amazon;
  • Hard Drive : OCZ Trion 150 240GB SSD — 70 долларов через Amazon;
  • Материнская плата : MSI ECO h210M LGA 1151 MicroATX — 59 долларов на Amazon;
  • GPU : EVGA GeForce GTX 1060 6 ГБ — 235 долларов через Amazon
  • Power Supply : Rosewill 550W — 90 долларов через Amazon;
  • RAM: Viper Elite Series 2 x 8GB — 98 долларов через Amazon;
  • Радиатор : NoFan CR-80EH — 47 долларов.80 через Amazon
  • Case : Xion microATX — 23 доллара на Amazon;
  • Итого : 915,80 $

Цена актуальна на момент написания.

Build 2: $ 400-699 среднего уровня

Для недорогих сборок рекомендуется 65-ваттный процессор Intel Core i5-6400, обеспечивающий надежную и низкую производительность.Он не предлагает Hyperthreading, но обеспечивает максимальную энергоэффективность. С другой стороны, я застрял в запасе 80+ золота, а не в блоке с платиновым рейтингом.

  • CPU : Intel Core i5-6400 (65 Вт) — 176 долларов.90 через SuperBiiz;
  • Hard Drive : OCZ Trion 150 240GB SSD — 70 долларов через Amazon;
  • GPU : EVGA GeForce GTX 1050Ti Mini 4GB GDDR5 — 132 доллара через SuperBiiz;
  • Блок питания : Seasonic SSP-450RT 450 Вт — 60 долларов через SuperBiiz;
  • Материнская плата : MSI ECO h210M LGA 1151 MicroATX — 59 долларов на Amazon;
  • RAM : Ballistix Sport LT 8GB Kit (2x4GB) — 59 долларов через Amazon;
  • Case : Xion MicroATX — 23 доллара на Amazon;
  • Итого : 579 долларов.90

Цена актуальна на момент написания.

Build 3: Ниже ~ 200 $ Low End

На компьютерах более низкого уровня я однажды рекомендовал технологию AMD APU.Однако последние процессоры Intel Celeron и Pentium превосходят их по большинству показателей — не намного больше. Например, процессор N3150 в материнской плате MSI ECO Mini-ITX потребляет 6 Вт, а также позволяет пользователям отключать несущественные функции материнской платы для дополнительной экономии энергии.

Для примеров, оснащенных AMD, я собрал три образца сборки APU на случай, если вам нужны другие варианты конфигурации.Однако прямо сейчас Intel предлагает лучшую энергоэффективность для бюджетных сборок.

  • ЦП + материнская плата : MSI N3150I ECO mini-ITX — 75 долларов на Amazon;
  • Hard Drive : ADATA SU800 128GB SSD — 52 доллара.88 через OutletPC;
  • RAM : Patriot Signature 4 ГБ (1 x 4 ГБ) SODIMM — 23 доллара на Amazon;
  • Корпус + блок питания : Antec ISK110 — 48 долларов через Fry’s Electronics;
  • Итого : 198,88 долл. США

Цена актуальна на момент написания.

Заключение

Создание собственного высокоэффективного настольного компьютера не требует много труда или денег — для этого требуются только специальные детали, правильная конфигурация BIOS и высокоэффективный источник питания.Для выбора безвентиляторных высокопроизводительных ПК ознакомьтесь с кратким описанием сборок FanlessTech начального, среднего и высокого уровня. Или, если вы ищете бесшумные машины без вентилятора, загляните в наш запас готовых экологически чистых ПК.

Twitter и Facebook закрывают сообщение президента Трампа

Об авторе

Каннон Ямада (Опубликовано 322 статей)

Как работают компьютеры? Простое введение

Криса Вудфорда.Последнее изменение: 12 апреля 2020 г.

Это был, вероятно, худший прогноз в история. Еще в 1940-х Томас Уотсон, глава гигантской корпорации IBM, по общему мнению, предсказывал что миру потребуется не более «примерно пяти компьютеров». Шесть десятилетий спустя и мировая популяция компьютеров теперь выросла примерно до одного миллиарда машин!

Честно говоря, Ватсон, компьютеры сильно изменились за то время. В 1940-х они были гигантскими научных и военных гигантов по заказу правительства в стоимость в миллионы долларов за штуку; сегодня большинство компьютеров даже не узнаваемы как таковые: они встроены во все, от микроволновых печей до мобильных телефонов и цифровых радио.Что делает компьютеры достаточно гибкими для работы во всех этих разная техника? Почему они так феноменально полезны? И как точно они работают? Рассмотрим подробнее!

Фото: НАСА управляет одними из самых мощных в мире компьютеры, но это просто супер-увеличенные версии одного вы используете прямо сейчас. Фото Тома Чиды любезно предоставлено НАСА.

Что такое компьютер?

Фото: Компьютеры, которые раньше занимали огромную комнату, теперь удобно умещаются на пальце !.

Компьютер — это электронная машина, обрабатывающая информацию. слова, информационный процессор: он принимает необработанная информация (или данные) на одном конце, хранит ее, пока готовый поработать с ним, жует и немного хрустит, а затем выплевывает результаты на другом конце. У всех этих процессов есть имя. Получение информации называется вводом, хранение информации более известно как память (или хранилище), информация о жевании также известна как обработка, и выдача результатов называется выводом.

Представьте, если бы компьютер был человеком. Предположим, у вас есть друг, который действительно хорошо разбирается в математике. Она настолько хороша, что все, кого она знает, отправляют свои математические задачи на ее. Каждое утро она подходит к своему почтовому ящику и находит кучу новые задачи по математике ждут ее внимания. Она складывает их на нее стол, пока она начинает смотреть на них. Каждый день она снимает письмо вершина стопки, изучает проблему, прорабатывает решение и нацарапает ответ на обороте. Она ставит это в конверте на имя человека, который прислал ей оригинал проблема и вставляет ее в свой лоток, готовый к отправке.Затем она переходит в следующее письмо в стопке. Вы видите, что ваш друг работает прямо как компьютер. Ее почтовый ящик — это ее вклад; куча на ее столе это ее память; ее мозг — процессор, который вырабатывает решения к проблемам; а выходной лоток на ее столе — ее продукция.

Как только вы поймете, что компьютеры — это ввод, память, обработка и вывод, весь мусор на вашем столе станет более понятным:

Artwork: компьютер работает, комбинируя ввод, хранение, обработку и вывод.Все основные части компьютерной системы задействованы в одном из этих четырех процессов.

  • Вход : клавиатура и мышь, для Например, это просто единицы ввода — способы ввода информации в ваш компьютер, который он может обрабатывать. Если вы используете микрофон и программу распознавания голоса, это другая форма ввода.
  • Память / хранилище : Ваш компьютер, вероятно, хранит все ваши документы и файлы на жестком диске: огромный магнитная память. Но небольшие компьютерные устройства, такие как цифровые фотоаппараты и мобильные телефоны используют другие типы запоминающих устройств, например карты флэш-памяти.
  • Обработка : процессор вашего компьютера (иногда известный как центральный процессор) является микрочип закопан глубоко внутри. Он работает невероятно усердно и невероятно жарко в процессе. Вот почему на вашем компьютере немного вентилятор уносит прочь — чтобы мозг не перегрелся!
  • Вывод : Ваш компьютер, вероятно, имеет ЖК-экран способна отображать графику с высоким разрешением (очень детализированную), а также, возможно, стереодинамики. У вас может быть струйный принтер на вашем столе тоже, чтобы сделать более постоянная форма выпуска.

Что такое компьютерная программа?

Как вы можете прочитать в нашей длинной статье по истории компьютеров, первая компьютеры были гигантскими вычислительными машинами, и все, что они когда-либо это были «решающие цифры»: решать долго, сложно или утомительно математические задачи. Сегодня компьютеры работают с гораздо большим разнообразием проблемы — но все они, по сути, вычисления. Все компьютер делает, помогая вам редактировать фотографию, которую вы сделали с цифровой камерой для отображения веб-страница связана с тем или иным способом манипулирования числами.

Фото: Калькуляторы и компьютеры очень похожи, потому что оба работают, обрабатывая числа. Однако калькулятор просто вычисляет результаты расчетов; и это все, что он когда-либо делал. Компьютер хранит сложные наборы инструкций, называемых программами, и использует их для выполнения гораздо более интересных задач.

Предположим, вы смотрите на цифровую фотографию, которую вы только что сделали краской или программа для редактирования фотографий, и вы решаете, что хотите ее зеркальное отображение (в другими словами, переверните это слева направо).Вы, наверное, знаете, что фото состоит из миллионы отдельных пикселей (цветных квадратов), расположенных в виде сетки шаблон. Компьютер хранит каждый пиксель в виде числа, поэтому цифровой фотография действительно похожа на мгновенное упорядоченное упражнение в рисовании числа! Чтобы перевернуть цифровую фотографию, компьютер просто переворачивает последовательность чисел, поэтому они идут справа налево, а не слева направо. верно. Или предположим, что вы хотите сделать фотографию ярче. Все вы иметь для этого нужно сдвинуть маленький значок «яркость».Затем компьютер работает через все пиксели, увеличивая значение яркости для каждого из них скажем, на 10 процентов, чтобы сделать все изображение ярче. Итак, еще раз, проблема сводится к числам и расчетам.

Компьютер отличается от калькулятора тем, что он может работать. все само по себе. Вы просто даете ему свои инструкции (называемые программой) и он идет, выполняя длинную и сложную серию операций, все сам по себе. Еще в 1970-х и 1980-х годах, если вы хотели домашний компьютер чтобы делать что угодно, вам нужно было написать свою маленькую программу сделать это.Например, прежде чем вы могли написать письмо на компьютере, вам нужно было написать программу, которая будет читать буквы, которые вы набираете на клавиатуры, сохраните их в памяти и отобразите на экране. Написание программы обычно занимало больше времени, чем ее выполнение. было то, что вы изначально хотели сделать (написав письмо). милая вскоре люди начали продавать программы вроде текстовых редакторов, чтобы спасти вас необходимость писать программы самостоятельно.

Сегодня большинство пользователей компьютеров полагаются на заранее написанные программы, такие как Microsoft Word и Excel или загрузите приложения для своих планшетов и смартфоны, не особо заботясь о том, как они туда попали.(Приложения, если вы когда-нибудь задумывались, — это просто очень аккуратно упакованный компьютер программ.) Вряд ли кто-нибудь уже пишет программы, что очень жаль, потому что это очень весело и очень полезно. Большинство людей рассматривают свои компьютеры как инструменты, которые помогают им выполнять работу, а не как сложные электронные машины они должны предварительно программировать. Некоторые скажут, что это тоже хорошо, потому что у большинства из нас есть дела поважнее, чем компьютер. программирование. Опять же, если мы все полагаемся на компьютерные программы и приложения, кто-то должен напишите их, и эти навыки необходимы для выживания.К счастью, недавно был возрождение интереса к компьютерному программированию. «Кодирование» (неофициальное название программирования, поскольку программы иногда называют «кодом») снова преподается в школах с помощью простого в использовании программирования такие языки, как Scratch. Растет движение любителей, связанных создавать самостоятельно такие гаджеты, как Raspberry Pi и Arduino. Клубы кода, где волонтеры обучают детей программированию, возникают по всему миру.

В чем разница между программным и аппаратным обеспечением?

Прелесть компьютера в том, что он может запускать текстовый редактор. минута, а через пять секунд программа для редактирования фотографий.В другом слова, хотя мы не думайте об этом так, компьютер можно перепрограммировать как сколько угодно раз. Вот почему программы еще называют программным обеспечением. Они «мягкие» в том смысле, что они не фиксированы: их можно легко меняется. Напротив, компьютерное оборудование — биты и части, из которых он сделан (и периферийные устройства, как мышь и принтер, вы подключаетесь к нему) — в значительной степени исправляется при покупке это с полки. Оборудование — это то, что делает ваш компьютер мощным; возможность запускать различное программное обеспечение — вот что делает его гибким.Что компьютеры могут выполнять так много разных задач, что делает их такими полезными — и именно поэтому миллионы из нас больше не могут жить без них!

Что такое операционная система?

Предположим, вы вернулись в конец 1970-х годов, когда еще не были изобретены стандартные компьютерные программы. Вы хотите запрограммировать свой компьютер, чтобы он работал как текстовый процессор, чтобы вы могли написать свой первый роман — что относительно легко, но потребует вам несколько дней работы. Через несколько недель вы устаете писать и решаете перепрограммировать свою машину. так что он будет играть в шахматы.Еще позже вы решаете запрограммировать его для хранения вашей коллекции фотографий. Каждый из эти программы делают разные вещи, но они также делают много похожих вещей. Например, все они должны уметь читать клавиши, нажатые на клавиатуре, сохранять данные в памяти и извлекать их, а также отображать символы (или картинки) на экране. Если бы вы писали много разных программ, вы бы обнаружили, что написание одних и тех же программных элементов, чтобы каждый раз выполнять одни и те же базовые операции.Это немного рутинной работы по программированию, так почему бы просто не собрать вместе все части программы, которые выполняют эти основные функции и повторно использовать их каждый раз?

Фотография: Типичная компьютерная архитектура. Компьютер можно представить как серию слоев с аппаратным обеспечением на уровне внизу — BIOS, соединяющий оборудование с операционной системой, и приложения, которые вы фактически используете (например, текстовые процессоры, Веб-браузеры и т. Д.), Работающие поверх этого. Каждый из этих уровней относительно независим, поэтому, например, одна и та же операционная система Windows может работать на ноутбуках с другим BIOS, в то время как компьютер под управлением Windows (или другой операционной системы) может запускать любое количество различных приложений.

Это основная идея операционной системы: это базовое программное обеспечение компьютера, которое (по сути) контролирует основные операции ввода, вывода, хранения и обработки. Вы можете думать об операционной системе как об «основе» программного обеспечения на компьютере, на котором построены другие программы (называемые приложениями). Таким образом, текстовый процессор и шахматная игра — это два разных приложения, которые полагаются на операционную систему для выполнения основного ввода, вывода и так далее. Операционная система полагается на еще более фундаментальную часть программирования, называемую BIOS (базовая система ввода-вывода), которая является связующим звеном между программным обеспечением операционной системы и оборудованием.В отличие от операционной системы, которая одинакова на разных компьютерах, BIOS меняется от машины к машине в зависимости от точной конфигурации оборудования и обычно пишется производителем оборудования. BIOS, строго говоря, не является программным обеспечением: это программа, которая полупостоянно хранится в одна из основных микросхем компьютера, поэтому она известна как прошивка (однако обычно он разработан таким образом, чтобы его можно было время от времени обновлять).

Операционные системы имеют еще одно большое преимущество. В 1970-х (и в начале 1980-х) практически все компьютеры были до безумия разными.Все они работали по-своему, идиосинкразически, с довольно уникальным оборудованием (разными процессорами, адресами памяти, размерами экрана и всем остальным). Программы, написанные для одной машины (такой как Apple), обычно не запускаются на любой другой машине (такой как IBM) без довольно обширного преобразования. Это было большой проблемой для программистов, потому что им приходилось переписывать все свои программы каждый раз, когда они хотели запустить их на разных машинах. Как операционные системы помогли? Если у вас стандартная операционная система и вы настраиваете ее так, чтобы она работала на любой машине, все, что вам нужно сделать, это написать приложения, работающие в этой операционной системе.Тогда любое приложение будет работать на любой машине. Операционная система, которая окончательно совершила этот прорыв, была, конечно же, Microsoft Windows, созданная Биллом Гейтсом. (Важно отметить, что существовали и более ранние операционные системы. Вы можете прочитать больше об этой истории в нашей статье об истории компьютеров.)

Что внутри вашего ПК?

Предупреждение! Не открывайте свой компьютер, если вы действительно не знаете, что делаете. Внутри присутствует опасное напряжение, особенно рядом с блоком питания, и некоторые компоненты могут оставаться под напряжением в течение длительного времени после отключения питания.

Фотография: Внутри корпуса типичного ПК показаны четыре ключевые области компонентов, описанные ниже. Фото Армадни, любезно предоставлено Wikimedia Commons, опубликовано под лицензией Creative Commons.

Внутри типичного ПК все выглядит довольно пугающе и запутанно: печатные платы в виде маленьких «городков» с микросхемами. для зданий — радужные спутанные провода, идущие между ними, и черт знает что еще. Но работайте над компонентами медленно и логично, и все начинает обретать смысл.Большая часть того, что вы видите, делится на четыре широкие области, которые я выделил зеленым, синим, красный и оранжевый на этой фотографии.

Блок питания (зеленый)

На основе трансформатора он преобразует домашнее или офисное напряжение питания (например, 230/120 вольт переменного тока) в гораздо более низкое напряжение постоянного тока, необходимое для электронных компонентов (типичное жесткому диску может потребоваться всего 5–12 В). Обычно есть большой охлаждающий вентилятор снаружи корпуса компьютера рядом с розеткой питания (или гораздо меньший вентилятор на ноутбуке, обычно с одной стороны).В этой машине есть два внешних вентилятора (зеленого и синего цветов) слева, которые охлаждают как блок питания, так и материнскую плату.

Материнская плата (синяя)

Как следует из названия, это мозг компьютера, где и выполняется настоящая работа. Главный процессор (центральный процессор) легко обнаружить, потому что обычно на нем установлен большой вентилятор, который охлаждает его. На этой фотографии процессор находится прямо под черным вентилятором с красным центральным шпинделем.То, что находится на материнской плате, варьируется от машины к машине. Помимо процессора, есть BIOS, микросхемы памяти, слоты расширения для дополнительной памяти, гибкие ленточные соединения с другими печатными платами, соединения IDE (Integrated Drive Electronics) с жесткими дисками и приводами CD / DVD, а также последовательные или параллельные соединения. к таким вещам, как USB-порты и другие порты на корпусе компьютера (часто припаиваются к материнской плате, особенно в ноутбуках).

Прочие печатные платы (красные)

Хотя материнская плата может (теоретически) содержать все микросхемы, необходимые компьютеру, для ПК довольно часто используются еще три отдельные печатные платы: одна для управления сетью, одна для обработки графики и одна для обработки звука.

  • Сетевая карта (также называемая сетевой картой / контроллером, сетевой картой или сетевым адаптером), как следует из названия, подключает ваш компьютер к другим машинам (или другим устройствам, например принтерам) в компьютерная сеть (обычно это локальная сеть, локальная сеть, дома или в офисе или более широкий Интернет) с использованием системы, называемой Ethernet. Старые компьютеры могут иметь отдельную карту беспроводной сети (WLAN) для подключения к Wi-Fi; более новые, как правило, имеют одну сетевую карту, которая поддерживает как Ethernet, так и Wi-Fi.У некоторых компьютеров есть микросхемы, которые делают все свои сети на материнской плате.
  • Графическая карта (также называемая видеокартой или адаптером дисплея) — это часть компьютера, которая обрабатывает все, что связано с дисплеем. Почему этого не делает центральный процессор? На некоторых машинах это может быть, но это замедляет как основную обработку машины, так и графику. Автономные графические карты появились в самом первом ПК IBM PC, который имел автономный адаптер дисплея еще в 1981 году; мощные современные видеокарты для 3D-игр с высоким разрешением и полноцветными играми, выпущенные с середины 1990-х годов и впервые использованные такими компаниями, как Nvidia и ATI.
  • Звуковая карта — это еще одна автономная печатная плата, основанная на цифро-аналоговые и аналого-цифровые преобразователи: он превращает цифровую (числовую) информацию, с которой работает центральный процессор, в аналоговые (постоянно меняющиеся) сигналы, которые могут питать колонки; и преобразует аналоговые сигналы, поступающие с микрофона, в цифровые сигналы, понятные процессору. Как и в случае с сетью и графикой, звуковые карты или звуковые чипы могут быть интегрированы в материнскую плату.

Приводы (оранжевые)

ПК обычно имеют один, два или три жестких диска, а также устройство чтения / записи CD / DVD.Хотя на некоторых машинах есть только один жесткий диск и один комбинированный привод CD / DVD, у большинства есть пара пустых слотов расширения для дополнительных приводов.

Производители ПК

, как правило, проектируют и производят собственные материнские платы, но большинство компонентов, которые они используют, являются стандартными и модульными. Так, например, ваш ПК Lenovo или ноутбук Asus может иметь жесткий диск Toshiba, графическую карту Nvidia, звуковую карту Realtek и т. Д. Даже на материнской плате компоненты могут быть модульными и работать по принципу plug-and-play: «Intel Inside» означает, что у вас под вентилятором установлен процессор Intel.Все это означает, что очень легко заменить или обновить компоненты ПК, когда они изнашиваются или устаревают; вам не нужно выбрасывать всю машину. Если вы заинтересованы в том, чтобы возиться, есть пара хороших книг, перечисленных в разделе «Как работают компьютеры» ниже, которые проведут вас через этот процесс.

Внешние разъемы («порты»)

Вы можете подключить свой компьютер к периферийным устройствам (внешним устройствам, таким как струйные принтеры, веб-камеры и карты флэш-памяти) либо с проводным соединением (последовательный или параллельный кабель), либо с беспроводным (обычно Bluetooth или Вай фай).Много лет назад компьютеры и периферийные устройства использовал ошеломляющую коллекцию различных соединителей для связывания для другого. В наши дни практически все ПК используют Стандартный способ соединения между собой называется USB (универсальная последовательная шина). USB предназначен для работы по принципу «подключи и работай»: все, что вы подключаете к компьютеру, работает более или менее прямо из коробки, хотя вам, возможно, придется подождать, пока ваш компьютер загрузится драйвер (дополнительное программное обеспечение, которое сообщает ему, как использовать это конкретное оборудование).

Фото: USB-порты на компьютерах очень надежны, но время от времени они ломаются, особенно после многих лет использования.Если у вас есть ноутбук со слотом PCMCIA, вы можете просто вставить карту адаптера USB, как это, чтобы создать два новых порта USB (или добавить еще два порта, если у вас мало).

Помимо упрощения обмена данными, USB также обеспечивает питание таких вещей, как внешние жесткие диски. Два внешних контакта USB-штекера — это разъемы питания +5 В и заземления, в то время как внутренние контакты несут данные. Когда вы подключаете свой телефон к USB-порт в автобусе или поезде, вы просто используете внешние контакты для зарядки аккумулятор.

USB обеспечивает гораздо больше возможностей для подключения, чем старые последовательные компьютерные порты. Он разработан так, что вы можете подключать его разными способами, либо с по одному периферийному устройству, подключенному к каждому из ваших USB-разъемов или через USB-концентраторы (где один USB-штекер дает вам доступ к целому ряду USB-разъемов, к которым может быть подключено больше концентраторов и розеток). Теоретически к одному компьютеру может быть подключено 127 различных USB-устройств.

6 вещей, которые можно сделать со старым компьютером

  • Техника и гаджеты

    Вычисление